-
采用液相电化学沉积技术制备了ZnO纳米颗粒掺杂的类金刚石(DLC)薄膜, 研究了ZnO纳米颗粒掺杂对DLC薄膜场发射性能的影响. 利用X射线光电子能谱、透射电子显微镜、Raman光谱以及原子力显微镜分别对薄膜的化学组成、微观结构和表面形貌进行了表征. 结果表明: 薄膜中的ZnO纳米颗粒具有纤锌矿结构, 其含量随着电解液中Zn源的增加而增加. ZnO纳米颗粒掺杂增强了DLC薄膜的石墨化和表面粗糙度. 场发射测试表明, ZnO纳米颗粒掺杂能提高DLC薄膜的场发射性能, 其中Zn与Zn+C的原子比为10.3%的样品在外加电场强度为20.7 V/m时电流密度达到了1 mA/cm2. 薄膜场发射性能的提高归因于ZnO掺杂引起的表面粗糙度和DLC薄膜石墨化程度的增加.The formation of ZnO nanoparticles embedded in diamond-like carbon (DLC) thin film, deposited by electrochemical technique without post-processing, is observed. The effect of ZnO doping on the field emission (FE) property of DLC film is investigated. The chemical composition, the microstructure, and the surface morphologies of the sample are characterized by X-ray photoelectron microscopy, transmission electron microscopy, Raman spectrum, and atomic force microscope (AFM). It is shown that the ZnO nanoparticles are of a wurtzite structure and the content of ZnO increases with Zn source increasing in electrolyte. The ZnO doping enhances both the graphitization and the surface roughness of the DLC film, which is verified by Raman spectrum and AFM. By the ZnO doping, the FE properties of the DLC film are improved. An emission current density of 1 mA/cm2 is obtained at an electric field of 20.7 V/m for the film with a Zn/(Zn+C) ratio of 10.3at%. The improvement on the FE properties of the ZnO-doped DLC film is analyzed in the context of microstructure and chemical composition.
-
Keywords:
- zinc oxide nanoparticles /
- diamond-like carbon film /
- electrochemical deposition /
- field emission
[1] Ilie A, Ferrari A C, Yagi T, Robertson J 2000 Appl. Phys. Lett. 76 2627
[2] [3] [4] Ma H Z, Zhang L, Yao N, Zhang B L, Hu H L, Wen G L 2000 Diam. Relat. Mater. 9 1608
[5] [6] Silva S R P, Carey J D, Guo X, Tsang W M, Poa C H P 2005 Thin Solid Films 79 482
[7] [8] Wu Y H, Hsu C M, Chia C T, Lin L N, Cheng C L 2002 Diam. Relat. Mater. 11 804
[9] [10] Ahmed S F, Mitra M K, Chattopadhyay K K 2007 Appl. Surf. Sci. 253 5480
[11] Liang H F, Liang Z H, Liu C L, Meng L G 2010 Appl. Surf. Sci. 256 1951
[12] [13] Paul R, Dalui S, Pal A K 2010 Surf. Coat. Technol. 204 4025
[14] [15] Wang L, Giles N C 2003 J. Appl. Phys. 94 973
[16] [17] [18] Yang P, Yan H, Mao S 2002 Adv. Funct. Mater. 12 323
[19] [20] Lan W, Tang G M, Cao W L, Liu X Q, Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese) [兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月 2009 58 8501]
[21] [22] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J 2002 Appl. Phys. Lett. 81 3648
[23] Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C 2003 Adv. Funct. Mater. 13 811
[24] [25] [26] Hsieh J, Chua D H C, Tay B K, Teo E H T, Tanemura M 2008 Diam. Relat. Mater. 17 167
[27] [28] Namba Y 1992 J. Vac. Technol. A 10 3368
[29] [30] Li R S, Xie E Q, Zhou M, Zhang Z X, Wang T, Lu B A 2008 Appl. Surf. Sci. 255 2787
[31] Wan S H, Wang L P, Xun Q J 2010 Electrochem. Commun. 12 61
[32] [33] Kundoo S, Saha P, Chattopadhyay K K 2004 Mater. Lett. 58 3920
[34] [35] [36] Xia Y N 2010 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [夏娅娜 2010 博士学位论文 (北京:中国科学院研究生院)]
[37] [38] Jung D R, Son D, Kim J, Kim C, Park B 2008 Appl. Phys. Lett. 93 163118
[39] Irmer G, Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694
[40] [41] [42] Rajalakshmi M, Arora A K, Bendre B S, Mahamuni S 2000 J. Appl. Phys. 87 2445
[43] Cusc R, Alarcn-Llad E, Ibez J, Arts L, Jimnez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 165202
[44] [45] Fowler R H, Nordheim L W 1928 Proc. Roy. Soc. A 119 173
-
[1] Ilie A, Ferrari A C, Yagi T, Robertson J 2000 Appl. Phys. Lett. 76 2627
[2] [3] [4] Ma H Z, Zhang L, Yao N, Zhang B L, Hu H L, Wen G L 2000 Diam. Relat. Mater. 9 1608
[5] [6] Silva S R P, Carey J D, Guo X, Tsang W M, Poa C H P 2005 Thin Solid Films 79 482
[7] [8] Wu Y H, Hsu C M, Chia C T, Lin L N, Cheng C L 2002 Diam. Relat. Mater. 11 804
[9] [10] Ahmed S F, Mitra M K, Chattopadhyay K K 2007 Appl. Surf. Sci. 253 5480
[11] Liang H F, Liang Z H, Liu C L, Meng L G 2010 Appl. Surf. Sci. 256 1951
[12] [13] Paul R, Dalui S, Pal A K 2010 Surf. Coat. Technol. 204 4025
[14] [15] Wang L, Giles N C 2003 J. Appl. Phys. 94 973
[16] [17] [18] Yang P, Yan H, Mao S 2002 Adv. Funct. Mater. 12 323
[19] [20] Lan W, Tang G M, Cao W L, Liu X Q, Wang Y Y 2009 Acta Phys. Sin. 58 8501 (in Chinese) [兰伟, 唐国梅, 曹文磊, 刘雪芹, 王印月 2009 58 8501]
[21] [22] Lee C J, Lee T J, Lyu S C, Zhang Y, Ruh H, Lee H J 2002 Appl. Phys. Lett. 81 3648
[23] Tseng Y K, Huang C J, Cheng H M, Lin I N, Liu K S, Chen I C 2003 Adv. Funct. Mater. 13 811
[24] [25] [26] Hsieh J, Chua D H C, Tay B K, Teo E H T, Tanemura M 2008 Diam. Relat. Mater. 17 167
[27] [28] Namba Y 1992 J. Vac. Technol. A 10 3368
[29] [30] Li R S, Xie E Q, Zhou M, Zhang Z X, Wang T, Lu B A 2008 Appl. Surf. Sci. 255 2787
[31] Wan S H, Wang L P, Xun Q J 2010 Electrochem. Commun. 12 61
[32] [33] Kundoo S, Saha P, Chattopadhyay K K 2004 Mater. Lett. 58 3920
[34] [35] [36] Xia Y N 2010 Ph. D. Dissertation (Beijing: Graduate University of Chinese Academy of Sciences) (in Chinese) [夏娅娜 2010 博士学位论文 (北京:中国科学院研究生院)]
[37] [38] Jung D R, Son D, Kim J, Kim C, Park B 2008 Appl. Phys. Lett. 93 163118
[39] Irmer G, Dorner-Reisel A 2005 Adv. Eng. Mater. 7 694
[40] [41] [42] Rajalakshmi M, Arora A K, Bendre B S, Mahamuni S 2000 J. Appl. Phys. 87 2445
[43] Cusc R, Alarcn-Llad E, Ibez J, Arts L, Jimnez J, Wang B G, Callahan M J 2007 Phys. Rev. B 75 165202
[44] [45] Fowler R H, Nordheim L W 1928 Proc. Roy. Soc. A 119 173
计量
- 文章访问数: 7540
- PDF下载量: 747
- 被引次数: 0