Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography

Wang Ru Wang Xiang-Xian Yang Hua Ye Song

Citation:

Theoretical investigation of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography

Wang Ru, Wang Xiang-Xian, Yang Hua, Ye Song
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Sub-wavelength grating is a critical element in micro and nano-photonics. So its fabrication and application have attracted a great deal of research attention. While the existing lithography technologies of sub-wavelength grating fabrication have some insufficient points, such as high cost, low output, technical complexity, or difficult to change the period of the sub-wavelength grating. In this paper, an adjustable period and large area sub-wavelength grating with low cost and maskless is proposed and theoretically realized. The sub-wavelength grating is inscribed by the interference between two TE0 waveguide modes, where the TE0 waveguide mode is existent in an asymmetric metal-cladding dielectric waveguide structure excited by the prism coupling method. The dispersion curve of TE0 waveguide mode, the relationship between the period of the sub-wavelength grating and the exciting light source, the refractive index of the prism and the photoresist, especially the thickness of the photoresist are theoretically analyzed in detail. The distribution of the interference optical field of TE0 waveguide mode in the multilayer structure including metal film, photoresist and air layer is numerically simulated using the finite element method. The shorter the exciting light wavelength with the identical photoresist condition, the smaller the period of sub-wavelength grating inscribed by TE0 waveguide modes interference lithography is. For further studying the influences of refractive index and thickness of photoresist and the refractive index of the prism on the period of sub-wavelength grating, the exciting light with 442 nm wavelength and the Ag matel film are used. The period of sub-wavelength grating is smaller with thicker photoresist film, when the refractive indexes of photoresist and prism are the same. The larger refractive index of photoresist is beneficial to inscribing the sub-wavelength grating with smaller period when the refractive index of prism and the thickness of photoresist are identical. The prism with higher refractive index can provide wave vector-matching condition with lager propagation constant, and can inscribe sub-wavelength grating with smaller period. Compared with surface plasmons interference lithography which needs the thicker photoresist film due to the finite penetration depth of SPs, TE0 waveguide modes interference can realize adjustableperiod sub-wavelength grating writing for thicker photoresist condition by changing exciting light source, the refractive index of prism, the refractive index of photoresist and especially the thickness of photoresist. The realization of adjustable period sub-wavelength grating inscribed by TE0 waveguide modes interference lithography will provide important theoretical support for reducing the fabrication cost of sub-wavelength gratings and broadening the application scope of sub-wavelength grating.
      Corresponding author: Wang Xiang-Xian, wangxx869@126.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 61505074), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509) and the Natural Science Foundation of Chaohu University, China (Grant No. XLZ201201)
    [1]

    Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898

    [2]

    Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627

    [3]

    Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]

    [4]

    Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286

    [5]

    Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]

    [6]

    Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269

    [7]

    Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11

    [8]

    Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]

    [9]

    Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111

    [10]

    Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989

    [11]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [12]

    Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580

    [13]

    Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006

    [14]

    Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97

    [15]

    Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353

    [16]

    Spille E, Feder R 1977 Top. Appl. Phys. 22 35

    [17]

    Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441

    [18]

    Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565

    [19]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [20]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [21]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115

    [22]

    Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206

    [23]

    Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301

    [24]

    Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007

    [25]

    Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107

    [26]

    Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]

    [27]

    Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106

    [28]

    Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103

    [29]

    Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748

    [30]

    Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]

    [31]

    Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]

  • [1]

    Pajewski L, Borghi R, Schettini G, Frezza F, Santarsiero M 2001 Appl. Opt. 40 5898

    [2]

    Lopez A G, Graighead H G 1998 Opt. Lett. 23 1627

    [3]

    Yi D R, Yan Y B, Tan X F 2003 Chin. J. Lasers 30 405 (in Chinese) [伊德尔, 严瑛白, 谭峭峰 2003中国激光 30 405 ]

    [4]

    Cescato L H, Gluch E, Streibl N 1990 Appl. Opt. 29 3286

    [5]

    Zhao H J, Yuan D R, Wu Z M 2008 Laser Optoelectronics Progress 45 38 (in Chinese) [赵华君, 袁代蓉, 吴正茂 2008 激光与光电子学进展 45 38 ]

    [6]

    Watt F, Bettiol A A, Vankan J A, Teo E J, Breese M B H 2005 Int. J. Nanosci. 4 269

    [7]

    Cabrini S, Carpentiero A, Kumar R, Businaro L, Candeloro P, Prasciolu M, Gosparini A, Andreani C, Vittorio M D, Stomeo T, Fabrizio E D 2005 Microelectron. Eng. 78 11

    [8]

    Xu X D, Liu Y, Qiu K Q, Liu Z K, Hong Y L, Fu S J 2013 Acta Phys. Sin. 62 234202 (in Chinese) [徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军 2013 62 234202]

    [9]

    Vieu C, Carcenac F, Ppin A, Chen Y, Mejias M, Lebib A, Manin-Ferlazzo L, Couraud L, Launois H 2000 Appl. Surf. Sci. 164 111

    [10]

    Fischer P B, Chou S Y 1993 Appl. Phys. Lett. 62 2989

    [11]

    Sun X, You S F, Xiao P, Ding Z J 2006 Acta Phys. Sin. 55 148 (in Chinese) [孙霞, 尤四方, 肖沛, 丁泽军 2006 55 148]

    [12]

    Taylor J S, Sommargren G E, Sweeney D W, Hudyma R M 1998 Proc. SPIE. 3331 580

    [13]

    Silverman P J 2005 J. Microlith. Microfab. Microsyst. 4 011006

    [14]

    Owa S, Nagasaka H 2004 J. Microlith. Microfab. Microsyst. 3 97

    [15]

    Switkes M, Rothschild M 2001 J. Vac. Sci. Technol. B 19 2353

    [16]

    Spille E, Feder R 1977 Top. Appl. Phys. 22 35

    [17]

    Feiertag G, Ehrfeld W, Freimuth H, Kolle H, Lehr H, Schmidt M, Sigalas M M, Soukoulis C M, Kiriakidis G, Pedersen T, Kuhl J, Koenig W 1997 Appl. Phys. Lett. 71 1441

    [18]

    Xie Z H, Yu W X, Wang T S, Zhang H X, Fu Y Q, Liu H, Li F Y, Lu Z W, Sun Q 2011 Plasmonics 6 565

    [19]

    Luo X, Ishihara T 2004 Opt. Express 12 3055

    [20]

    Luo X, Ishihara T 2004 Appl. Phys. Lett. 84 4780

    [21]

    Li Y, Liu F, Ye Y, Meng W, Cui K, Feng X, Zhang W, Huang Y D 2014 Appl. Phys. Lett. 104 081115

    [22]

    Liang H M, Wang J Q, Wang X, Wang G M 2015 Chin. Phys. Lett. 32 104206

    [23]

    Guo K, Liu J L, Zhou K Y, Liu S T 2015 Chin. Phys. B 24 047301

    [24]

    Sreekanth K V, Murukeshan V M 2010 J. Micro/Nanolith. MEMS MOEMS 9 023007

    [25]

    Prabhathan P, Murukeshan V M 2015 Opt. Eng. 54 097107

    [26]

    Wang X X, Zhang D G, Chen Y K, Fu Q, Wang P, Ming H 2011 CN Patent ZL201120355625.1 (in Chinese) [王向贤, 张斗国, 陈漪恺, 傅强, 王沛, 明海 2011 CN Patent ZL 201120355625.1]

    [27]

    Wang B, Chew A B, Teng J, Si G, Danner A J 2011 Appl. Phys. Lett. 99 151106

    [28]

    Wang X, Zhang D, Chen Y, Zhu L, Yu W, Wang P, Yao P, Ming H, Wu W, Zhang Q 2013 Appl. Phys. Lett. 102 031103

    [29]

    Kusaka K, Kurosawa H, Ohno S, Sakaki Y, Nakayama K, Moritake Y, Ishihara T 2014 Opt. Express. 22 18748

    [30]

    Wang X X 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王向贤 2013 博士学位论文(合肥: 中国科学技术大学)]

    [31]

    Cao Z Q 200 Guided Wave Optics (Beijing: Science Press) pp150-154 (in Chinese) [曹庄琪 2007 导波光学(北京:科学出版社) 第150-154 页]

  • [1] Lu Meng-Jia, Yun Bin-Feng. Silicon-based compact mode converter using bricked subwavelength grating. Acta Physica Sinica, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu. Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating. Acta Physica Sinica, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [4] Wang Jing-Li, Zhang Jian-Zhe, Chen He-Ming. Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure. Acta Physica Sinica, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [5] Zhang Fu-Ling, Fu Li-Shan, Hu Pi-Li, Han Wen-Jie, Wang Hong-Zhuo, Zhang Feng, Guan Bao-Lu. Ultra-narrow linewidth characteristics of 795-nm subwavelength grating-coupled cavity vertical cavity surface emitting laser. Acta Physica Sinica, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [6] Ji Zeng-Chao, Chen Shi-Xiu, Gao Shen, Chen Jun, Tian Wei. Analysis on mechanism of radiating microwave from vacuum diode. Acta Physica Sinica, 2016, 65(14): 145202. doi: 10.7498/aps.65.145202
    [7] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [8] Fu Tao, Yang Zi-Qiang, Ouyang Zheng-Biao. Dispersion properties of plasma-filled metallic photonic crystal slow-wave structure. Acta Physica Sinica, 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [9] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [10] Li Shuo, Guan Bao-Lu, Shi Guo-Zhu, Guo Xia. Polarization stable vertical-cavity surface-emitting laser with surface sub-wavelength gratings. Acta Physica Sinica, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [11] Wang Dou-Dou, Wang Li-Li. Design and characteristics of novel optical polymer Topas COC-based microstructured optical fiber. Acta Physica Sinica, 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [12] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [13] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [14] Feng Yong-Ping, Cui Jun-Zhi, Deng Ming-Xiang. The two-scale finite element computation for thermoelastic problem in periodic perforated domain. Acta Physica Sinica, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [15] Bai Wen-Li, Guo Bao-Shan, Cai Li-Kang, Gan Qiao-Qiang, Song Guo-Feng. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings. Acta Physica Sinica, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [16] Wang Jing-Shi, Xu Xiao-Dong, Liu Xiao-Jun, Xu Gang-Can. Low pass effect of surface defect metal based on laser ultrasonic. Acta Physica Sinica, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [17] Xu Yan, Hu Jing-Guo. The study of parallel pump microwave magnetic field instability threshold in metallic ferromagnetic strip under in-plane confinement. Acta Physica Sinica, 2008, 57(7): 4521-4526. doi: 10.7498/aps.57.4521
    [18] Yu Yi-Ting, Yuan Wei-Zheng, Qiao Da-Yong, Liang Qing. A novel microstructure for in-situ measurement of residual stress in micromechanical thin films. Acta Physica Sinica, 2007, 56(10): 5691-5697. doi: 10.7498/aps.56.5691
    [19] Zhang Hui-Lan, Zhang Guang-Yong, Wang Cheng, Liu Shi-Xiong, Liu Jin-Song. Waveguide induced by bright holographic solitons. Acta Physica Sinica, 2007, 56(1): 236-239. doi: 10.7498/aps.56.236
    [20] Xu Shi-Zhen, Jia Tian-Qing, Sun Hai-Yi, Li Xiao-Xi, Cheng Zhao-Gu, Feng Dong-Hai, Li Cheng-Bin, Xu Zhi-Zhan. Theoretical analysis of fs-laser induced micro-explosion in fused silica. Acta Physica Sinica, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
Metrics
  • Abstract views:  6639
  • PDF Downloads:  194
  • Cited By: 0
Publishing process
  • Received Date:  03 December 2015
  • Accepted Date:  07 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map