搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合型光栅的光谱色散匀滑新方案

王健 侯鹏程 张彬

引用本文:
Citation:

基于复合型光栅的光谱色散匀滑新方案

王健, 侯鹏程, 张彬

A new scheme of spectral dispersion smoothing based on hybrid grating

Wang Jian, Hou Peng-Cheng, Zhang Bin
PDF
导出引用
  • 针对惯性约束聚变装置对提高靶面辐照均匀性的要求,提出了基于复合型光栅的光谱色散匀滑新方案,即利用复合型光栅中不同的色散区域对激光束进行不同方向的色散,例如,内部色散区域I的色散方向为水平或垂直方向,外部色散区域Ⅱ的色散方向为圆周方向,使得焦斑内部散斑在远场的扫动方向是平动和旋转两种方式的混合,因而可以有效减小焦斑内部条纹状强度调制,进而提高靶面辐照的均匀性.本文建立了基于复合型光栅的光谱色散匀滑理论模型,分析了复合型光栅方案的匀滑效果,并与典型的光谱角色散方案和“星”光栅方案进行了比较.在此基础上,针对复合型光栅的色散区域面积比值、色散区域I和Ⅱ的刻线密度等关键参数进行了讨论.结果表明,色散区域I面积占总色散区域面积比值在0.3–0.5时,复合型光栅方案可有效减小焦斑内条纹状强度调制和沿径向的强度调制;随着色散区域I,Ⅱ的刻线密度在一定范围内增加,焦斑均匀性得到改善,但结合实际的加工情况,应选取合理的光栅刻线密度;与典型一维光谱色散(1D-SSD)匀滑方案相比,该方案的靶面辐照均匀性更好,且可实现与多维光谱色散匀滑类似的效果,而与“星”光栅方案相比,该方案中复合型光栅的加工相对较简单,且其靶面辐照均匀性也更佳.
    The irradiance uniformity on target plane is a key issue in laser-driven inertial confinement facilities. In the typical schemes of one-dimensional smoothing by spectral dispersion (1D-SSD) and the “star” grating, the stripe pattern inside the focal spot appears inevitably, besides, the fabrication of the “star” grating is relatively difficult. Thus, a new spectral dispersion smoothing scheme based on a hybrid grating is proposed, which not only achieves the better smoothing effect, but also exhibits some specific advantages in the fabrication and the dispersion way. According to the different direction of the spectral dispersion, the hybrid grating is divided into inner and outer dispersion areas. That is, the dispersion direction of the inter dispersion area is in the horizontal or vertical direction, and the dispersion direction of the outer dispersion area is in the azimuthal direction. When the laser beam with the temporal phase modulation propagates through the hybrid grating, the dispersion directions of the laser beam in the inner and the outer dispersion areas are different, leading to the redistribution of the speckles inside the focal spot in the resultant direction of the translation and rotation on the target plane. Consequently, the focal spot on the target plane achieves the beam smoothing in radial and horizontal or vertical direction. In the present paper, the theoretical model of the hybrid grating scheme based on the spectral dispersion smoothing is built up. Using the theoretical model, the smoothing effect of the hybrid grating scheme is analyzed, and compared with those of the typical schemes of 1D-SSD and the “star” grating. The contrast and the fractional power above the intensity (FOPAI) are used to evaluate the smoothing characteristic of the focal spot. In addition, the influences of the area ratio and groove density in the different dispersion areas of the hybrid grating on beam-smoothing effect are also discussed. Results indicate that when the inner dispersion area accounts for the 0.3-0.5 of the total dispersion area, the hybrid grating scheme can effectively suppress the stripe intensity modulation both in the radial direction and the vertical direction. With increasing the groove densities of the inner and the outer dispersion area in a certain range, the irradiance uniformity of the focal spot is further improved. However, considering the actual processing of the hybrid grating, the appropriate groove density should be selected. Compared with the typical scheme of the 1D-SSD, the scheme of the hybrid grating can achieve the better smoothing effect with the multi-direction spectral dispersion smoothing. Furthermore, the fabrication of the hybrid grating is relatively simple and the irradiation uniformity on the target plane is also good compared with those of the “star” grating scheme.
      通信作者: 张彬, zhangbinff@sohu.com
    • 基金项目: 国家重大专项应用基础项目(批准号:JG2015034)和科技部创新人才推进计划重点领域创新团队(批准号:2014RA4051)资助的课题.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Basic Research Program of the National Major Project of China (Grant No. JG2015034) and the China Innovative Talent Promotion Plans for Innovation Team in Priority Fields (Grant No. 2014RA4051).
    [1]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese)[钟哲强, 胡小川, 李泽龙, 叶荣, 张彬2015 64 054209]

    [2]

    Weng S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 154(in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯2014光学学报34 154]

    [3]

    Desselberger M, Willi O 1993 Phys. Plasmas 05 896

    [4]

    Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342

    [5]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [6]

    Rothenberg J E, Moran B D, Henesian M A, Wonterghem B M V 1996 Second International Conference on Solid State Lasers for Application to ICF Paris, France, October 22, 1997 p313

    [7]

    Zhang R, Su J Q, Wang J J, Li P, Dong J, Hu D X 2014 International Optical Design Hawaii, United States, June 22-26, 2014 IM2B. 8

    [8]

    Rothenberg J E 1995 Proc. SPIE 2633 634

    [9]

    Sui Z 2006 Ph. D. Dissertation (Shanghai:Fudan University) (in Chinese)[隋展2006博士学位论文(上海:复旦大学)]

    [10]

    Zhang R, Zhang X, Sui Z, Hai M 2011 Opt. Laser Technol. 43 1073

    [11]

    Zhong Z Q, Zhou B J, Ye R, Zhang B 2014 Acta Phys. Sin. 63 035201(in Chinese)[钟哲强, 周冰洁, 叶荣, 张彬 2014 63035201]

    [12]

    Li J C 2008 Ph. D. Dissertation (Mianyang:China Academy of Engineering Physics) (in Chinese)[李锦灿2008博士学位论文(绵阳:中国工程物理研究院)]

    [13]

    Yang B, Li Z Y, Xiao X 2013 Acta Phys. Sin. 62 184214 (in Chinese)[杨彪, 李智勇, 肖希2013 62 184214]

    [14]

    Li Y Y, Liu L S, Wang T F, Shao J F, Guo J 2015 Infrared Laser Eng. 44 857 (in Chinese)[李远洋, 刘立生, 王挺峰, 邵俊峰, 郭劲2015红外与激光工程44 857]

    [15]

    Wen P, Li Z L, Zhong Z Q, Zhang B 2015 Acta Opt. Sin. 35 167(in Chinese)[文萍, 李泽龙, 钟哲强, 张彬2015光学学报35 167]

    [16]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterso R N, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmaye C C, White R K, Yang S T, Wonterghem B M 2007 Appl. Opt. 46 3276

    [17]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [18]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

  • [1]

    Zhong Z Q, Hu X C, Li Z L, Ye R, Zhang B 2015 Acta Phys. Sin. 64 054209 (in Chinese)[钟哲强, 胡小川, 李泽龙, 叶荣, 张彬2015 64 054209]

    [2]

    Weng S L, Yan H, Zhang Y H, Yang C L, Wang J, Shi Q K 2014 Acta Opt. Sin. 34 154(in Chinese)[温圣林, 颜浩, 张远航, 杨春林, 王健, 石琦凯2014光学学报34 154]

    [3]

    Desselberger M, Willi O 1993 Phys. Plasmas 05 896

    [4]

    Smalyuk V A, Boehly T R, Bradley D K, Goncharov V N, Delettrez J A, Knauer J P, Meyerhofer D D, Oron D, Shvarts D 1998 Phys. Rev. Lett. 81 5342

    [5]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [6]

    Rothenberg J E, Moran B D, Henesian M A, Wonterghem B M V 1996 Second International Conference on Solid State Lasers for Application to ICF Paris, France, October 22, 1997 p313

    [7]

    Zhang R, Su J Q, Wang J J, Li P, Dong J, Hu D X 2014 International Optical Design Hawaii, United States, June 22-26, 2014 IM2B. 8

    [8]

    Rothenberg J E 1995 Proc. SPIE 2633 634

    [9]

    Sui Z 2006 Ph. D. Dissertation (Shanghai:Fudan University) (in Chinese)[隋展2006博士学位论文(上海:复旦大学)]

    [10]

    Zhang R, Zhang X, Sui Z, Hai M 2011 Opt. Laser Technol. 43 1073

    [11]

    Zhong Z Q, Zhou B J, Ye R, Zhang B 2014 Acta Phys. Sin. 63 035201(in Chinese)[钟哲强, 周冰洁, 叶荣, 张彬 2014 63035201]

    [12]

    Li J C 2008 Ph. D. Dissertation (Mianyang:China Academy of Engineering Physics) (in Chinese)[李锦灿2008博士学位论文(绵阳:中国工程物理研究院)]

    [13]

    Yang B, Li Z Y, Xiao X 2013 Acta Phys. Sin. 62 184214 (in Chinese)[杨彪, 李智勇, 肖希2013 62 184214]

    [14]

    Li Y Y, Liu L S, Wang T F, Shao J F, Guo J 2015 Infrared Laser Eng. 44 857 (in Chinese)[李远洋, 刘立生, 王挺峰, 邵俊峰, 郭劲2015红外与激光工程44 857]

    [15]

    Wen P, Li Z L, Zhong Z Q, Zhang B 2015 Acta Opt. Sin. 35 167(in Chinese)[文萍, 李泽龙, 钟哲强, 张彬2015光学学报35 167]

    [16]

    Haynam C A, Wegner P J, Auerbach J M, Bowers M W, Dixit S N, Erbert G V, Heestand G M, Henesian M A, Hermann M R, Jancaitis K S, Manes K R, Marshall C D, Mehta N C, Menapace J, Moses E, Murray J R, Nostrand M C, Orth C D, Patterso R N, Sacks R A, Shaw M J, Spaeth M, Sutton S B, Williams W H, Widmaye C C, White R K, Yang S T, Wonterghem B M 2007 Appl. Opt. 46 3276

    [17]

    Wisoff P J, Bowers M W, Erbert G V, Browning D F, Jedlovec D R 2004 Proc. SPIE 5341 146

    [18]

    Hou P C, Zhong Z Q, Zhang B 2016 Opt. Laser Technol. 85 48

  • [1] 黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋. 在间接驱动内爆实验中采用花生腔增强对称性调控.  , 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [2] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [3] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案.  , 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [4] 江秀娟, 唐一凡, 王利, 李菁辉, 王博, 项颖. 考虑钕玻璃放大器增益特性的光谱色散匀滑系统性能研究.  , 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [5] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照.  , 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [6] 余波, 丁永坤, 蒋炜, 黄天晅, 陈伯伦, 蒲昱东, 晏骥, 陈忠靖, 张兴, 杨家敏, 江少恩, 郑坚. 神光III主机极向驱动靶丸表面辐照均匀性.  , 2017, 66(14): 145202. doi: 10.7498/aps.66.145202
    [7] 易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业. 基于移位双光栅色散元件的X射线谱仪研制.  , 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [8] 刘钰薇, 张文海, 张继成, 范全平, 魏来, 晏卓阳, 赵屹东, 崔明启, 邱荣, 曹磊峰. 准随机矩形孔阵列透射光栅.  , 2015, 64(7): 074201. doi: 10.7498/aps.64.074201
    [9] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究.  , 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [10] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究.  , 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [11] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究.  , 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [12] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析.  , 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [13] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [14] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [15] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [16] 张锐, 王建军, 粟敬钦, 刘兰琴, 丁磊, 唐军, 刘华, 景峰, 张小民. 基于波导相位调制器的光谱色散平滑技术实验研究.  , 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [17] 张锐, 王建军, 粟敬钦, 刘兰琴, 邓青华. 基于线性调频脉冲的光谱色散平滑技术实验研究.  , 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [18] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [19] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [20] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究.  , 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
计量
  • 文章访问数:  6053
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-11
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map