搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空二极管辐射微波的机理分析

季曾超 陈仕修 高深 陈俊 田微

引用本文:
Citation:

真空二极管辐射微波的机理分析

季曾超, 陈仕修, 高深, 陈俊, 田微

Analysis on mechanism of radiating microwave from vacuum diode

Ji Zeng-Chao, Chen Shi-Xiu, Gao Shen, Chen Jun, Tian Wei
PDF
导出引用
  • 在研究真空开关的过程中, 发现真空二极管能辐射出宽带微波. 这种器件只由带触发装置的阴极和平板阳极组成, 不存在金属波纹慢波结构, 所以真空二极管的辐射机理与等离子体填充微波器件不同, 不能直接套用等离子体填充微波器件的相关理论. 本文描述了真空二极管产生辐射的物理过程, 建立了真空二极管辐射的数学模型, 通过求解波动方程得到产生辐射的色散关系, 并绘制出了色散曲线. 将理论分析得到的色散曲线与已经测得的微波辐射进行比较, 两者能很好地符合. 理论分析和实验结果表明, 电子束和磁化等离子体的相互作用是真空二极管产生微波辐射的原因.
    In order to study the breakdown process of vacuum switch, we use a vacuum diode, which is composed of a cathode and an anode, to replace the vacuum switch. We find that there is wide band microwave radiation in the breakdown process of the vacuum diode. Because there is no structure of metallic bellow waveguide in the vacuum diode, the radiation mechanism of the vacuum diode is different from that of the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. In order to clarify the mechanism of the microwave radiation from the vacuum diode, we analyze the breakdown process of the vacuum diode. When the anode plasma has been generated and the plasma closure has not occurred, the electrons emitted from the initial plasma will be incident on the anode plasma, and the vacuum diode will radiate microwave in this process. The self-generating magnetic field of the electron beam is a poloidal magnetic field. When the electron beam is incident on the plasma, the plasma will be magnetized by the poloidal magnetic field. The theory of magnetic fluid is used to analyze the problem in this paper, and the mathematical model of the vacuum diode radiation is obtained by using the simultaneous equations of the motion equations and Maxwell's equations. In this model, there is an interface between the electron beam and the magnetized plasma. The model is divided into two parts by the interface, i.e., inside of the electron beam and outside of the electron beam. The dispersion relation of the radiation generated by the vacuum diode is obtained by solving the mathematical model. Based on the dispersion relation and the experimental data, the dispersion curves are plotted for the different electron beam velocities. The dispersion curves show that the undulation of the dispersion curve becomes smaller and smaller with the decrease of the electron beam velocity, and the final dispersion curve will be approximated by a straight line. When the theoretical dispersion curves are compared with the actually measured time-frequency maps of the radiation, we find that they are well consistent with each other. Theoretical deduction and experiments indicate that the radiation generated by the vacuum diode originates from the interaction between the electron beam and the magnetized plasma.
      通信作者: 陈仕修, sxiuchen@163.com
    • 基金项目: 国家自然科学基金(批准号:11075123)和国家自然科学基金青年科学基金(批准号:51207171)资助的课题.
      Corresponding author: Chen Shi-Xiu, sxiuchen@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075123) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51207171).
    [1]

    Chen S X, Sun Y L, Xia C Z, Yan G Z 2008 High Power Laser Particle Beams 20 477 (in Chinese) [陈仕修, 孙幼林, 夏长征, 严国志 2008 强激光与粒子束 20 477]

    [2]

    Goebel D M, Ponti E S, Feicht J R, Watkins R M 1996 Intense Microwave Pulses IV Denver, CO, United States, August 4-9, 1996 p1

    [3]

    Liu P K, Tang C J, Liu S G, Xiong C D, Tang C J, Qian S J 1997 Acta Phys. Sin. 46 892 (in Chinese) [刘濮鲲, 唐昌建, 刘盛纲, 熊彩东, 唐昌建, 钱尚介 1997 46 892]

    [4]

    Whittum D H, Sessler A M, Dawson J M 1990 Phys. Rev. Lett. 64 2511

    [5]

    Ersfeld B, Bonifacio R, Chen S, Islam M R, Smorenburg P W, Jaroszynski D A 2014 New J. Phys. 16 093025

    [6]

    Karbushev N I, Rostomyan E V 2008 Phys. Lett. A 372 4484

    [7]

    Bret A, Firpo M C, Deutsch C 2004 Phys. Rev. E 70 046401

    [8]

    Watson K M, Bludman S A, Rosenbluth M N 1960 Phys. Fluids 3 741

    [9]

    Bludman S A, Watson K M, Rosenbluth M N 1960 Phys. Fluids 3 747

    [10]

    Bret A, Dieckmann M E, Gremillet L 2010 Ann. Geophys. 28 2127

    [11]

    Liu S G, Barker R J, Gao H, Yan Y, Zhu D J 2000 IEEE Trans. Plasma Sci. 28 1016

    [12]

    Su D, Tang C J 2009 Phys. Plasmas 16 053101

    [13]

    Su D, Tang C J 2011 Phys. Plasmas 18 023104

    [14]

    Zhang Y X, Jia J, Liu S G, Yan Y 2010 Chin. Phys. B 19 105203

  • [1]

    Chen S X, Sun Y L, Xia C Z, Yan G Z 2008 High Power Laser Particle Beams 20 477 (in Chinese) [陈仕修, 孙幼林, 夏长征, 严国志 2008 强激光与粒子束 20 477]

    [2]

    Goebel D M, Ponti E S, Feicht J R, Watkins R M 1996 Intense Microwave Pulses IV Denver, CO, United States, August 4-9, 1996 p1

    [3]

    Liu P K, Tang C J, Liu S G, Xiong C D, Tang C J, Qian S J 1997 Acta Phys. Sin. 46 892 (in Chinese) [刘濮鲲, 唐昌建, 刘盛纲, 熊彩东, 唐昌建, 钱尚介 1997 46 892]

    [4]

    Whittum D H, Sessler A M, Dawson J M 1990 Phys. Rev. Lett. 64 2511

    [5]

    Ersfeld B, Bonifacio R, Chen S, Islam M R, Smorenburg P W, Jaroszynski D A 2014 New J. Phys. 16 093025

    [6]

    Karbushev N I, Rostomyan E V 2008 Phys. Lett. A 372 4484

    [7]

    Bret A, Firpo M C, Deutsch C 2004 Phys. Rev. E 70 046401

    [8]

    Watson K M, Bludman S A, Rosenbluth M N 1960 Phys. Fluids 3 741

    [9]

    Bludman S A, Watson K M, Rosenbluth M N 1960 Phys. Fluids 3 747

    [10]

    Bret A, Dieckmann M E, Gremillet L 2010 Ann. Geophys. 28 2127

    [11]

    Liu S G, Barker R J, Gao H, Yan Y, Zhu D J 2000 IEEE Trans. Plasma Sci. 28 1016

    [12]

    Su D, Tang C J 2009 Phys. Plasmas 16 053101

    [13]

    Su D, Tang C J 2011 Phys. Plasmas 18 023104

    [14]

    Zhang Y X, Jia J, Liu S G, Yan Y 2010 Chin. Phys. B 19 105203

  • [1] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象.  , 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [2] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟.  , 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [3] 顾梓恒, 臧强, 郑改革. 外尔半金属调制的范德瓦耳斯声子极化激元色散性质.  , 2023, 72(19): 197102. doi: 10.7498/aps.72.20230167
    [4] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系.  , 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波.  , 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [6] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响.  , 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [7] 李文秋, 王刚, 苏小保. 非磁化冷等离子体柱中的模式辐射特性分析.  , 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [8] 肖佳, 徐大海, 伊珍, 谷文举. 三机械薄膜腔光力系统相互作用的研究.  , 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [9] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究.  , 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [10] 任益充, 范洪义. 不变本征算符方法求解含不同在位势的一维双原子链的色散关系.  , 2013, 62(15): 156301. doi: 10.7498/aps.62.156301
    [11] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型.  , 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [12] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系.  , 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系.  , 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼.  , 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 应变Si价带色散关系模型.  , 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
    [16] 王 亮, 曹金祥, 王 艳, 牛田野, 王 舸, 朱 颖. 电磁脉冲在实验室等离子体中传播时间的实验研究.  , 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [17] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算.  , 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [18] 谢鸿全, 刘濮鲲, 李承跃, 鄢 扬, 刘盛纲. 等离子体填充波纹波导中低频模式特性分析.  , 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [19] 周国成, 曹晋滨, 王德驹, 蔡春林. 无碰撞等离子体电流片中的低频波.  , 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [20] 范植开, 刘庆想. 谐振腔链色散关系及场分布的解析研究.  , 2000, 49(7): 1249-1255. doi: 10.7498/aps.49.1249
计量
  • 文章访问数:  6074
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28
  • 修回日期:  2016-05-09
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map