搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性

张福领 付丽珊 胡丕丽 韩文杰 王宏卓 张峰 关宝璐

引用本文:
Citation:

795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性

张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐

Ultra-narrow linewidth characteristics of 795-nm subwavelength grating-coupled cavity vertical cavity surface emitting laser

Zhang Fu-Ling, Fu Li-Shan, Hu Pi-Li, Han Wen-Jie, Wang Hong-Zhuo, Zhang Feng, Guan Bao-Lu
PDF
HTML
导出引用
  • 基于共振耦合腔理论, 提出并设计了基于亚波长光栅耦合腔的795 nm垂直腔面发射激光器((vertical cavity surface emitting laser, VCSEL), 利用COMSOL软件有限元方法对多光腔耦合线宽压窄机制和影响因素进行了详细分析, 研究发现, 当光子在多耦合腔中进行谐振时, 通过合理设计光栅耦合腔参数, 精确调控激光器多耦合腔相位匹配, 极大地促进了光谱线宽共振压窄效应, 并最终获得了高光束质量795 nm VCSEL激光器的超窄线宽输出. 理论结果表明, 当耦合腔间隔层厚度为180 nm时, 反射光谱冷腔线宽Δλc可以达到7 pm, 为实现VCSEL激光器kHz量级光谱线宽输出奠定了理论基础.
    In this paper, the 795-nm vertical cavity surface emitting laser (VCSEL) with sub-wavelength grating coupled cavity is proposed and designed based on the theory of resonant coupled cavity, and the mechanism of multi-cavity coupling linewidth narrowing and influencing factors are analyzed in detail by using the COMSOL software finite element method. The analysis results show that when photonic resonance takes place in a multi-coupled cavity, the grating-coupled cavity with reasonable design parameters and the multi-coupled cavity formed by precisely controlled lasers are phase-matched, which greatly strengthens the narrowing effect of the spectral linewidth resonance, and a 795-nm VCSEL laser with high beam quality and ultra-narrow linewidth output is obtained, finally. Theoretical results display that the reflection spectrum cold cavity linewidth Δλc of the coupling cavity with a thickness of 180nm of the spacer layer can reach 7 pm, which lays a theoretical foundation for achieving a kHz-level spectral linewidth output of VCSEL lasers.
      通信作者: 关宝璐, gbl@bjut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 60908012, 61575008, 61775007)、北京市自然科学基金(批准号:4172011)和北京市教育委员会(批准号: 040000546319525)资助的课题。
      Corresponding author: Guan Bao-Lu, gbl@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012, 61575008, 61775007), the Natural Science Foundation of Beijing City, China (Grant No. 4172011) and the Beijing Municipal Commission of Education of China (Grant No. 040000546319525).
    [1]

    Boletti A, Boffi P, Martelli P, Ferrario M, Martinelli M 2015 Opt. Express 23 1806Google Scholar

    [2]

    Ghiasi A 2015 Opt. Express 23 2085Google Scholar

    [3]

    Nakahama M, Sakaguchi T, Matsutani A, Koyama F 2014 Appl. Phys. Lett. 105 091110Google Scholar

    [4]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 121Google Scholar

    [5]

    Li M J, Li K M, Chen X, Snigdharaj K M, Adrian A J, Jason E H, Jeffery S S 2021 J. Lightwave Technol. 39 868Google Scholar

    [6]

    Chen B, Claus D, Russ D, Nizami R 2020 Opt. Lett. 45 5583Google Scholar

    [7]

    Schwindt P D, Lindseth B J, Shah V, Knappe S, Kitching J 2008 Conference on Lasers and Electro-Optics San Jose, United States of America, May 4−9, 2008 p1

    [8]

    Serkland D K, Geib K M, Peake G M, Lutwak R, Rashed A, Varghese M, Tepolt G, Prouty M Vertical-cavity Surface-emitting Lasers XI San Jose, February 12–13, 2007 p648406

    [9]

    Khan N A, Mahmood T 2020 J. Mod. Optic. 67 1334Google Scholar

    [10]

    Paul S, Haidar M T, Cesar J, Malekizandi M, Kögel B, Neumeyr C, Ortsiefer M, Küppers F 2016 Opt. Express 24 13142Google Scholar

    [11]

    Jiang L D, Shi L L, Luo J, Gao Q R, Lan T Y, Huang L G, Zhu T 2021 Opt. Lett. 46 2320Google Scholar

    [12]

    Schawlow A L, Townes C H 1940 Phys Rev. 112 1940Google Scholar

    [13]

    Henry C H 2015 IEEE J. Quantum. Elect. 18 259

    [14]

    Moller B, Zeeb E, Fiedler U, Hackbarth T, Ebeling K 1994 IEEE Photonic Tech. L. 6 921Google Scholar

    [15]

    Serkland D K, Keeler G A, Geib K M, Peake G M 2009 Proc. Spie. 7229 8Google Scholar

    [16]

    Ouvrard A, Garnache A, Cerutti L, Genty F, Romanini D 2005 IEEE Photonic Tech. L. 17 2020Google Scholar

    [17]

    Mizunami T, Kojima S, Kudo T 2006 The International Society for Optical Engineering Gwangju, Korea, September 5, 2006 p6351

    [18]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [19]

    Ura S, Kintaka K, Inoue J, Ogura T, Awatsuji Y Electronic Components and Technology Conference IEEE Las Vegas, United States of America, May 28−31, 2013 p1874

    [20]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Florian. Rev. Mod. 86 1391Google Scholar

    [21]

    Theisen M J, Brown T G 2015 J. Mod. Optic. 62 244Google Scholar

    [22]

    Vartiainen I, Tervo J, Kuittinen M 2009 Opt. Lett. 34 1648Google Scholar

    [23]

    Inoue J, Ogura T, Kondo T, Kintaka K, Nishio K, Awatsuji Y 2014 Opt. Lett. 39 1893Google Scholar

    [24]

    Haglund Erik, Jahed Mehdi, Gustaysson Johan S, Larsson A, O'Brien P 2019 Opt. Lett. 27 18892Google Scholar

  • 图 1  亚波长光栅耦合腔VCSEL激光器结构示意图

    Fig. 1.  Schematic diagram of subwavelength grating coupled cavity VCSEL laser structure.

    图 2  光栅结构参数对共振谱线的影响 (a)改变光栅周期; (b)改变间隔层厚度

    Fig. 2.  The influence of grating structure parameters on the resonance spectrum: (a) Change the grating period; (b) change the thickness of the spacer layer.

    图 3  (a), (b)两个谐振腔相互耦合的变化过程, 限制层厚度与光栅周期调节使其相互耦合; (c), (d)相互耦合完成之后, 不同间隔层厚度亚波长光栅VCSEL有源区与光栅耦合腔的谐振电场分布

    Fig. 3.  (a) and (b) The variation process of the mutual coupling of the two resonant cavities, limiting the layer thickness and adjusting the grating period to make them coupled; (c) and (d) after the mutual coupling is completed, the subwavelength grating VCSEL with different spacing layer thickness is active Resonant electric field distribution of coupling cavity between zone and grating

    图 4  间隔层厚度不同时, 基于导模共振耦合腔的VCSEL的冷腔反射谱的半高全宽与光场分布图 (a) db=60 nm; (b) db=120 nm; (c) db=150 nm; (d) db=180 nm

    Fig. 4.  Full width at half maximum and optical field distribution of cold cavity reflection spectrum of VCSEL based on guided mode resonant coupled cavity when the thickness of the spacer layer is different: (a) db=60 nm; (b) db=120 nm; (c) db=150 nm; (d) db=180 nm.

    图 5  光栅耦合腔VCSEL品质因子Q与间隔层厚度变化关系

    Fig. 5.  The relationship between the quality factor Q of the grating coupled cavity VCSEL and the thickness of the spacer layer.

    图 6  光栅耦合腔VCSEL输出线宽与光功率关系

    Fig. 6.  The relationship between the output line width of the grating coupled cavity VCSEL and the optical power.

    Baidu
  • [1]

    Boletti A, Boffi P, Martelli P, Ferrario M, Martinelli M 2015 Opt. Express 23 1806Google Scholar

    [2]

    Ghiasi A 2015 Opt. Express 23 2085Google Scholar

    [3]

    Nakahama M, Sakaguchi T, Matsutani A, Koyama F 2014 Appl. Phys. Lett. 105 091110Google Scholar

    [4]

    Liu A J, Wolf P, Lott J A, Bimberg D 2019 Photonics Res. 7 121Google Scholar

    [5]

    Li M J, Li K M, Chen X, Snigdharaj K M, Adrian A J, Jason E H, Jeffery S S 2021 J. Lightwave Technol. 39 868Google Scholar

    [6]

    Chen B, Claus D, Russ D, Nizami R 2020 Opt. Lett. 45 5583Google Scholar

    [7]

    Schwindt P D, Lindseth B J, Shah V, Knappe S, Kitching J 2008 Conference on Lasers and Electro-Optics San Jose, United States of America, May 4−9, 2008 p1

    [8]

    Serkland D K, Geib K M, Peake G M, Lutwak R, Rashed A, Varghese M, Tepolt G, Prouty M Vertical-cavity Surface-emitting Lasers XI San Jose, February 12–13, 2007 p648406

    [9]

    Khan N A, Mahmood T 2020 J. Mod. Optic. 67 1334Google Scholar

    [10]

    Paul S, Haidar M T, Cesar J, Malekizandi M, Kögel B, Neumeyr C, Ortsiefer M, Küppers F 2016 Opt. Express 24 13142Google Scholar

    [11]

    Jiang L D, Shi L L, Luo J, Gao Q R, Lan T Y, Huang L G, Zhu T 2021 Opt. Lett. 46 2320Google Scholar

    [12]

    Schawlow A L, Townes C H 1940 Phys Rev. 112 1940Google Scholar

    [13]

    Henry C H 2015 IEEE J. Quantum. Elect. 18 259

    [14]

    Moller B, Zeeb E, Fiedler U, Hackbarth T, Ebeling K 1994 IEEE Photonic Tech. L. 6 921Google Scholar

    [15]

    Serkland D K, Keeler G A, Geib K M, Peake G M 2009 Proc. Spie. 7229 8Google Scholar

    [16]

    Ouvrard A, Garnache A, Cerutti L, Genty F, Romanini D 2005 IEEE Photonic Tech. L. 17 2020Google Scholar

    [17]

    Mizunami T, Kojima S, Kudo T 2006 The International Society for Optical Engineering Gwangju, Korea, September 5, 2006 p6351

    [18]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [19]

    Ura S, Kintaka K, Inoue J, Ogura T, Awatsuji Y Electronic Components and Technology Conference IEEE Las Vegas, United States of America, May 28−31, 2013 p1874

    [20]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Florian. Rev. Mod. 86 1391Google Scholar

    [21]

    Theisen M J, Brown T G 2015 J. Mod. Optic. 62 244Google Scholar

    [22]

    Vartiainen I, Tervo J, Kuittinen M 2009 Opt. Lett. 34 1648Google Scholar

    [23]

    Inoue J, Ogura T, Kondo T, Kintaka K, Nishio K, Awatsuji Y 2014 Opt. Lett. 39 1893Google Scholar

    [24]

    Haglund Erik, Jahed Mehdi, Gustaysson Johan S, Larsson A, O'Brien P 2019 Opt. Lett. 27 18892Google Scholar

计量
  • 文章访问数:  7141
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-06-25
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回
Baidu
map