搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚波长介质光栅对单层过渡金属硫化物的发光增强

陶广益 齐鹏飞 戴宇琛 石蓓蓓 黄逸婧 张天浩 方哲宇

引用本文:
Citation:

亚波长介质光栅对单层过渡金属硫化物的发光增强

陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇

Enhancement of photoluminescence of monolayer transition metal dichalcogenide by subwavelength TiO2 grating

Tao Guang-Yi, Qi Peng-Fei, Dai Yu-Chen, Shi Bei-Bei, Huang Yi-Jing, Zhang Tian-Hao, Fang Zhe-Yu
PDF
HTML
导出引用
  • 过渡金属硫化物单层具有直接带隙, 可产生较强的光致发光, 这一特殊的性质使其在光电器件、光电探测等领域具有广泛的应用前景. 由于只有原子级别的厚度以及存在激子的非辐射复合, 其光致发光效率仍有待提高. 本文设计了一种金膜-二氧化钛光栅-过渡金属硫化物单层组合结构, 可大幅提升过渡金属硫化物单层光致发光效率. 利用Purcell效应对自发辐射速率进行控制, 得到峰值为3.4倍的发光增强. 研究了单层二硫化钨以及单层二硒化钨在设计结构上的光致发光信号, 通过实验证实了过渡金属硫化物单层与亚波长光栅耦合结构中光致发光增强的可行性, 为二维材料在光电器件中的应用提供了一个新思路.
    Transition metal dichalcogenide (TMDC) monolayers have direct band gaps and can produce strong photoluminescence(PL), thereby possessing a wide application prospect in photoelectric devices and photoelectric detection fields. However, their PL efficiency needs further improving because they are of atomic thickness only, besides, they have non-radiative recombination of excitons. In this study, a combination structure of a gold film, titanium dioxide subwavelength gratings and TMDC monolayers is designed, which can greatly improve PL efficiency of the TMDC monolayers. The spontaneous emission rate can be controlled by the Purcell effect, and the maximum enhancement of photoluminescence is as high as 3.4 times. In this paper, the PL signals of monolayer WS2 and monolayer WSe2 on the designed structure are studied. The feasibility of the enhancement of PL of the TMDC monolayers on the subwavelength grating structure is verified experimentally, which provides a new idea for the application of two-dimensional materials to optoelectronic devices.
      通信作者: 方哲宇, zhyfang@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0206000)、北京市自然科学基金(批准号: Z180011)和国家自然科学基金(批准号: 12027807, 61521004)资助的课题
      Corresponding author: Fang Zhe-Yu, zhyfang@pku.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0206000), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the National Natural Science Foundation of China (Grant Nos. 12027807, 61521004)
    [1]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74Google Scholar

    [3]

    Li H, Wu J, Yin Z Y, Zhang H 2014 Acc. Chem. Res. 47 1067Google Scholar

    [4]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [5]

    He K L, Kumar N, Zhao L, Wang Z F, Mak K F, Zhao H, Shan J 2014 Phys. Rev. Lett. 113 026803Google Scholar

    [6]

    Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G, Fal’ko V I 2013 Phys. Rev. B 88 045416Google Scholar

    [7]

    Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar

    [8]

    Morpurgo A F 2013 Nat. Phys. 9 532Google Scholar

    [9]

    Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar

    [10]

    Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Wang Z F, Jie S, Mak K F 2016 Nat. Nanotechnol. 12 144Google Scholar

    [14]

    Schaibley J R, Rivera P, Yu H Y, Seyler K L, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Xu X D 2016 Nat. Commun. 7 13747Google Scholar

    [15]

    Xu Z Q, Zhang Y P, Wang Z Y, Shen Y T, Huang W C, Xia X, Yu W Z, Xue Y S, Sun L T, Zheng C X, Lu Y R, Liao L, Bao Q L 2016 2 D Mater. 3 041001Google Scholar

    [16]

    Li P, Yuan K, Lin D Y, Xu X L, Wang Y L, Wan Y, Yu H R, Zhang K, Ye Y, Dai L 2017 Nanoscale 10 1039Google Scholar

    [17]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Cobden D H, Xu X D 2014 Nat. Nanotechnol. 9 268Google Scholar

    [18]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [19]

    Piper J R, Fan S 2016 ACS Photonics 3 571Google Scholar

    [20]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [21]

    Galfsky T, Sun Z, Considine C R, Chou C T, Ko W C, Lee Y H, Narimanov E E, Menon V M 2016 Nano Lett. 16 4940Google Scholar

    [22]

    Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S, Neshev D 2016 Sci. Rep. 6 22296Google Scholar

    [23]

    Su M Y, Mirin R P 2006 Appl. Phys. Lett. 89 033105Google Scholar

    [24]

    Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W, Aharonovich I 2017 Nano Lett. 17 2634Google Scholar

    [25]

    Sun S B, Dang J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C, Xu X L 2020 Chin. Phys. Lett. 37 087801Google Scholar

    [26]

    Qian D D, Liu L, Xing Z X, Dong R, Wu L, Cai H K, Kong Y F, Zhang Y, Xu J J 2021 Chin. Phys. Lett. 38 087801Google Scholar

    [27]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [28]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A V D, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 699Google Scholar

    [29]

    Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar

    [30]

    Goodman A J, Lien D H, Ahn G H, Spiegel L L, Amani M, Willard A P, Javey A, Tisdale W A 2020 J. Phys. Chem. C 124 12175Google Scholar

    [31]

    Drüppel M, Deilmann T, Krüger P, Rohlfing M 2017 Nat. Commun. 8 2117Google Scholar

    [32]

    Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K, Fang Z Y 2019 Mater. Today 24 10Google Scholar

    [33]

    Qi P F, Luo Y, Li W, Cheng Y, Shan H Y, Wang X L, Liu Z, Ajayan P M, Lou J, Hou Y L, Liu K H, Fang Z Y 2020 ACS Nano 14 6897Google Scholar

    [34]

    Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595Google Scholar

    [35]

    Duong N M H, Xu Z Q, Kianinia M, Su R, Liu Z, Kim S, Bradac C, Tran T T, Wan Y, Li L J, Solntsev A, Liu J, Aharonovich I 2018 ACS Photonics 5 3950Google Scholar

  • 图 1  (a) 探测样品光致发光信号示意图; (b) 光栅SEM图像(插图为局部放大图); (c) 样品光学显微镜图像; (d) 样品暗场图像; (e) 光栅反射谱; (f)光栅散射谱

    Fig. 1.  (a) schematic diagram, (c) optical microscope images, and (d) dark field of the WS2-grating coupled system; (b) SEM image, (e) reflection spectrum, (f) scattering spectrum of the grating.

    图 2  (a) 光栅外和(b) 光栅上单层WS2在不同激发功率PL光谱; (c) 光栅外和光栅上单层WS2光致发光强度与泵浦功率的关系以及对应的PL强度比值; (d) 400 μW泵浦功率下光栅外和光栅上单层WS2 PL光谱

    Fig. 2.  (a) PL spectra of the WS2 monolayer (a) outside the grating and (b) on the grating at different excitation powers; (c) relationship between the WS2 photoluminescence intensity and the pump power and the fitting curve; (d) PL spectra of the WS2 monolayer at 400 μW pump power.

    图 3  (a)—(e)不同激发功率下, 样品上单层WS2光致发光强度扫描图; (f) FDTD模拟计算的场分布

    Fig. 3.  (a)–(e) Scanning image of the WS2 monolayer’s photoluminescence intensity at different excitation power; (f) field distribution of the grating calculated by FDTD simulation.

    图 4  (a) 光栅外和(b) 光栅上的单层WS2在最大激发功率20%—100%下的时间分辨PL谱; (c) 光栅外和(d) 光栅上单层WS2在60%最大激发功率下的荧光寿命及拟合曲线

    Fig. 4.  Time-resolved PL spectra of the WS2 monolayer (a) outside the grating and (b) on the grating at 20%–100% of the maximum excitation power. Fluorescence lifetime and fitting curve of WS2 monolayer (c) outside the grating and (d) on the grating at 60% of the maximum excitation power.

    图 5  (a) 光栅上单层WSe2样品光学显微镜图像以及选取的5个测试位置; (b) 样品中5个不同位置处PL信号; (c) 光栅结构与激发光耦合示意图

    Fig. 5.  (a) Optical microscope image of the WSe2 monolayer on the grating and the five test locations selected; (b) PL signals at 5 different locations; (c) schematic diagram of the grating coupled with excitation light.

    Baidu
  • [1]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [2]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74Google Scholar

    [3]

    Li H, Wu J, Yin Z Y, Zhang H 2014 Acc. Chem. Res. 47 1067Google Scholar

    [4]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [5]

    He K L, Kumar N, Zhao L, Wang Z F, Mak K F, Zhao H, Shan J 2014 Phys. Rev. Lett. 113 026803Google Scholar

    [6]

    Kormányos A, Zólyomi V, Drummond N D, Rakyta P, Burkard G, Fal’ko V I 2013 Phys. Rev. B 88 045416Google Scholar

    [7]

    Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar

    [8]

    Morpurgo A F 2013 Nat. Phys. 9 532Google Scholar

    [9]

    Jones A M, Yu H Y, Ghimire N J, Wu S F, Aivazian G, Ross J S, Zhao B, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Nanotechnol. 8 634Google Scholar

    [10]

    Yuan H T, Bahramy M S, Morimoto K, Wu S F, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X D, Arita R, Nagaosa N, Iwasa Y 2013 Nat. Phys. 9 563Google Scholar

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [13]

    Wang Z F, Jie S, Mak K F 2016 Nat. Nanotechnol. 12 144Google Scholar

    [14]

    Schaibley J R, Rivera P, Yu H Y, Seyler K L, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Xu X D 2016 Nat. Commun. 7 13747Google Scholar

    [15]

    Xu Z Q, Zhang Y P, Wang Z Y, Shen Y T, Huang W C, Xia X, Yu W Z, Xue Y S, Sun L T, Zheng C X, Lu Y R, Liao L, Bao Q L 2016 2 D Mater. 3 041001Google Scholar

    [16]

    Li P, Yuan K, Lin D Y, Xu X L, Wang Y L, Wan Y, Yu H R, Zhang K, Ye Y, Dai L 2017 Nanoscale 10 1039Google Scholar

    [17]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J Q, Mandrus D G, Taniguchi T, Watanabe K, Yao W, Cobden D H, Xu X D 2014 Nat. Nanotechnol. 9 268Google Scholar

    [18]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [19]

    Piper J R, Fan S 2016 ACS Photonics 3 571Google Scholar

    [20]

    Butun S, Tongay S, Aydin K 2015 Nano Lett. 15 2700Google Scholar

    [21]

    Galfsky T, Sun Z, Considine C R, Chou C T, Ko W C, Lee Y H, Narimanov E E, Menon V M 2016 Nano Lett. 16 4940Google Scholar

    [22]

    Chen H T, Yang J, Rusak E, Straubel J, Guo R, Myint Y W, Pei J J, Decker M, Staude I, Rockstuhl C, Lu Y R, Kivshar Y S, Neshev D 2016 Sci. Rep. 6 22296Google Scholar

    [23]

    Su M Y, Mirin R P 2006 Appl. Phys. Lett. 89 033105Google Scholar

    [24]

    Tran T T, Wang D, Xu Z Q, Yang A, Toth M, Odom T W, Aharonovich I 2017 Nano Lett. 17 2634Google Scholar

    [25]

    Sun S B, Dang J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C, Xu X L 2020 Chin. Phys. Lett. 37 087801Google Scholar

    [26]

    Qian D D, Liu L, Xing Z X, Dong R, Wu L, Cai H K, Kong Y F, Zhang Y, Xu J J 2021 Chin. Phys. Lett. 38 087801Google Scholar

    [27]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [28]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A V D, Trusheim M E, Hatami F, Heinz T F, Hone J, Englund D 2013 Appl. Phys. Lett. 103 699Google Scholar

    [29]

    Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar

    [30]

    Goodman A J, Lien D H, Ahn G H, Spiegel L L, Amani M, Willard A P, Javey A, Tisdale W A 2020 J. Phys. Chem. C 124 12175Google Scholar

    [31]

    Drüppel M, Deilmann T, Krüger P, Rohlfing M 2017 Nat. Commun. 8 2117Google Scholar

    [32]

    Shan H Y, Yu Y, Zhang R, Cheng R T, Zhang D, Luo Y, Wang X L, Li B W, Zu S, Lin F, Liu Z, Chang K, Fang Z Y 2019 Mater. Today 24 10Google Scholar

    [33]

    Qi P F, Luo Y, Li W, Cheng Y, Shan H Y, Wang X L, Liu Z, Ajayan P M, Lou J, Hou Y L, Liu K H, Fang Z Y 2020 ACS Nano 14 6897Google Scholar

    [34]

    Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595Google Scholar

    [35]

    Duong N M H, Xu Z Q, Kianinia M, Su R, Liu Z, Kim S, Bradac C, Tran T T, Wan Y, Li L J, Solntsev A, Liu J, Aharonovich I 2018 ACS Photonics 5 3950Google Scholar

  • [1] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器.  , 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [2] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测.  , 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [3] 石蓓蓓, 陶广益, 戴宇琛, 何霄, 林峰, 张酣, 方哲宇. 电场调控双层WSe2转角同质结激子莫尔势.  , 2022, 71(17): 177301. doi: 10.7498/aps.71.20220664
    [4] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能.  , 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [5] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管.  , 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [6] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真.  , 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [7] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性.  , 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [8] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [9] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应.  , 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [10] 吴元军, 申超, 谭青海, 张俊, 谭平恒, 郑厚植. 基于磁圆二向色谱的单层MoS2激子能量和线宽温度依赖特性.  , 2018, 67(14): 147801. doi: 10.7498/aps.67.20180615
    [11] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究.  , 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [12] 周小东, 张少锋, 周思华. Au纳米颗粒和CdTe量子点复合体系发光增强和猝灭效应.  , 2015, 64(16): 167301. doi: 10.7498/aps.64.167301
    [13] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强.  , 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [14] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究.  , 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [15] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究.  , 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [16] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究.  , 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [17] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究.  , 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [18] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究.  , 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [19] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响.  , 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [20] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究.  , 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
计量
  • 文章访问数:  5367
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2021-12-28
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map