Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical modulation characteristics of all-dielectric grating at terahertz frequencies

Cui Bin Yang Yu-Ping Ma Pin Yang Xue-Ying Ma Li-Wen

Citation:

Optical modulation characteristics of all-dielectric grating at terahertz frequencies

Cui Bin, Yang Yu-Ping, Ma Pin, Yang Xue-Ying, Ma Li-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In recent years, metamaterials (MMs) have been widely investigated for their exotic electromagnetic characteristics which cannot be achieved in nature. However, one of the main limitations in traditional metallic-film MMs is a high level of radiation loss in metal and insertion loss of the high-permittivity or thick substrate. Fortunately, all-dielectric MMs with high refractive-index dielectric structures show significantly less material loss than their metallic counterparts. In this paper, an all-dielectric grating is fabricated on a 100-m-thick silicon wafer by using direct-laser-writing technique, and the properties of its Mie resonances are investigated by THz time-domain spectroscopy. Then we measure the spectral response of the all-dielectric grating under the optical modulation by a near-infrared pump-THz probe method. The modulation light source is an 808 nm continuous semiconductor laser with a maximum power (10 W). To give an insight into the underlying mechanisms of the Mie-type resonance effects on the arrayed, silicon pillars, the transmission of the all-dielectric grating is investigated numerically by the finite-element simulations through using CST Microwave Studio. In our experiment, the incident THz magnetic field is along the grating lines. The research results show that three typical Mie resonances are excited from 0 to 1 THz in the all-dielectric structure, and all the three resonant modes are different in the distributions of electric field and magnetic field. Furthermore, it is found that the resonance intensities of these three resonance peaks appear to be weakened variously with the increase of the optical power, and the first resonant peak modulation amplitude maximally reaches more than 50%. Combining the simulation results, we prove that the decrease of Mie resonance intensity under photo-excitation is caused by the absorption and the scattering of the incident THz wave by photo-generated carriers. Besides, we estimate the conductivity values of the all-dielectric grating under different optical excitations and find that the conductivity values reach 1000 S/m and 1500 S/m corresponding to 5 W and 10 W optical excitation, respectively. The estimated conductivity data will play an important role in the prospective optical modulation simulation. All the results mentioned above will provide an important reference for researches on the resonance properties of the all-dielectric metamaterials and the development of related functional devices.
      Corresponding author: Yang Yu-Ping, ypyang_cun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574408, 11204191, 11374378), the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2012YQ14000508), the Technology Foundation for Selected Overseas Chinese Scholar, and the Undergraduate Innovative Test Program, China (Grant Nos. GCCX2015110005, URTP2015110036).
    [1]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626

    [2]

    O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [3]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 64 117801]

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [6]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [9]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [10]

    Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702

    [11]

    Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901

    [12]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [13]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [14]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403

    [15]

    Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721

    [16]

    Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904

    [17]

    O'Brien S, Pendry J B 2002 Condens. Matter 14 6383

    [18]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753

    [19]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [20]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [21]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116

    [22]

    Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1

    [23]

    Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082

    [24]

    Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102

    [25]

    Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106

  • [1]

    Wu X J, Quan B G, Pan X C, Xu X L, Lu X C, Gu C Z, Wang L 2013 Biosens. Bioelectron. 42 626

    [2]

    O'Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [3]

    Zhang Y P, Li T T, L H H, Huang X Y, Zhang H Y 2015 Acta Phys. Sin. 64 117801 (in Chinese) [张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云 2015 64 117801]

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J, Han J G, Zhang W L 2012 Nat. Commun. 3 1151

    [6]

    Ding C F, Zhang Y T, Yao J Q, Sun C L, Xu D G, Zhang G Z 2014 Chin. Phys. B 23 124203

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 24 064201

    [9]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [10]

    Yang Y P, Singh R, Zhang W L 2014 Chin. Phys. B 23 128702

    [11]

    Vynck K, Felbacq D, Centeno E, Cãbuz A I, Cassagne D, Guizal B 2009 Phys. Rev. Lett. 102 133901

    [12]

    Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60

    [13]

    Bi K, Guo Y S, Liu X M, Zhao Q, Xiao J H, Lei M, Zhou J 2014 Sci. Rep. 4 7001

    [14]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403

    [15]

    Zhang J, Macdonald K F, Zheludev N I 2013 Opt. Express 21 26721

    [16]

    Shi L, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A, Meseguer F 2013 Nat. Commun. 4 1904

    [17]

    O'Brien S, Pendry J B 2002 Condens. Matter 14 6383

    [18]

    Yang Y, Kravchenko I I, Briggs D P, Valentine J 2014 Nat. Commun. 5 5753

    [19]

    Narayana S, Sato Y 2012 Adv. Mater. 24 71

    [20]

    Moitra P, Yang Y, Anderson Z, Kravchenko I I, Briggs D P, Valentine J 2013 Nat. Photon. 7 791

    [21]

    Slovick B, Yu Z G, Berding M, Krishnamurthy S 2013 Phys. Rev. B 8 165116

    [22]

    Rahm M, Li J S, Padilla W J 2013 J. Infr. Milli. Terahz. Waves 34 1

    [23]

    Li Q, Tian Z, Zhang X Q, Singh R, Du L L, Gu J Q, Han J G, Zhang W L 2015 Nat. Commun. 6 7082

    [24]

    Moitra P, Slovick B A, Yu Z G, Krishnamurthy S, Valentine J 2014 Appl. Phys. Lett. 104 171102

    [25]

    Yang Y P, Cui B, Geng Z X, Feng S 2015 Appl. Phys. Lett. 106 111106

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Feng Long-Cheng, Du Chen, Yang Sheng-Xin, Zhang Cai-Hong, Wu Jing-Bo, Fan Ke-Bin, Jin Biao-Bing, Chen Jian, Wu Pei-Heng. Research on terahertz real-time near-field spectral imaging. Acta Physica Sinica, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] Liu Zi-Yu, Qi Li-Mei, Dao Ri-Na, Dai Lin-Lin, Wu Li-Qin. Beam steerable terahertz antenna based on VO2. Acta Physica Sinica, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [4] Yan Zhi-Jin, Shi Wei. Radiation characteristics of terahertz GaAs photoconductive antenna arrays. Acta Physica Sinica, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [5] Zhu Zhi, Yan Shao-Jian, Duan Tong-Chuan, Zhao Yan, Sun Ting-Yu, Li Yang-Mei. THz electromagnetic wave regulated dissolution of methane hydrate. Acta Physica Sinica, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [6] Song Ke-Chao, Huo Shuai-Nan, Tu Dong-Ming, Hou Xin-Fu, Wu Xiao-Jing, Wang Ming-Wei. Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus. Acta Physica Sinica, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [7] Feng Zheng, Wang Da-Cheng, Sun Song, Tan Wei. Spintronic terahertz emitter: Performance, manipulation, and applications. Acta Physica Sinica, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng. Ultrafast terahertz detectors. Acta Physica Sinica, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng. Photon-excited carriers and emission of graphene in terahertz radiation fields. Acta Physica Sinica, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [11] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] Zhang Xue-Jin, Lu Yan-Qing, Chen Yan-Feng, Zhu Yong-Yuan, Zhu Shi-Ning. Terahertz surface polaritons. Acta Physica Sinica, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [13] Wang Chang, Cao Jun-Cheng. Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field. Acta Physica Sinica, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [14] Zhang Hui-Yun, Liu Meng, Zhang Yu-Ping, He Zhi-Hong, Shen Duan-Long, Wu Zhi-Xin, Yin Yi-Heng, Li De-Hua. Improvement of the output power of optical pumping THz lasers based on the theory of vibrational relaxation. Acta Physica Sinica, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [15] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [17] Han Yu, Yuan Xue-Song, Ma Chun-Yan, Yan Yang. Study of a gyrotron oscillator with corrugated interaction cavity. Acta Physica Sinica, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [18] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] Li Wen-Ping, Zhang Ya-Xin, Liu Sheng-Gang, Liu Da-Gang. Kinetic theory of a novel THZ gyrotron with three-mirror quasi-optical cavity. Acta Physica Sinica, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
Metrics
  • Abstract views:  6303
  • PDF Downloads:  766
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2015
  • Accepted Date:  03 December 2015
  • Published Online:  05 April 2016

/

返回文章
返回
Baidu
map