-
采用嵌入原子势分子动力学模拟方法, 研究了金属铝表面沟槽在冲击下形成微射流的微观过程和动力学性质. 通过对模拟结果的统计分析, 获得了较宽冲击压力范围内微射流形态的变化规律, 以及相应的质量-空间分布和质量-速度分布变化. 基于原子中心对称参数, 分析了样品近表面非晶态转变和卸载熔化过程, 获得了卸载熔化对微射流质量及其分布的影响规律. 研究还发现: 样品熔化之前, 微射流质量与波后粒子速度呈线性增加关系; 卸载熔化出现后, 微射流质量开始迅速增加; 当卸载熔化速度足够快时, 金属强度效应可忽略, 此时微射流质量与波后粒子速度再次表现出线性增加关系.Via molecular dynamics simulations employing an embedded-atom-method potential, we investigate the microscopic process and dynamical properties of shock-induced micro-jet from a grooved aluminum surface. For a large range of shock pressure, we obtain the micro-jet morphology variation, its mass spatial distribution and mass-velocity distribution. The amorphous state and release melting during the jetting are both analyzed using the central symmetry parameter, where the effect law of release melting on the micro-jet is obtained. It is found that the micro-jet mass keeps a linear increase with the piston velocity prior to release melting; the micro-jet mass is enhanced evidently after release melting; while the velocity of release melting is above a threshold, the jetting mass shows a linear increase with the piston velocity again, where the strength of material can be neglected.
-
Keywords:
- micro-jet /
- molecular dynamics /
- shock
[1] Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349
[2] Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese) [朱建士, 胡晓棉, 王裴, 陈军, 许爱国 2010 力学进展 40 400]
[3] Asay J R 1976 Material Ejection from Shock-Loaded free Surface of Aluminum and Lead, Sandia Laboratories, SAND76-0542
[4] Asay J R, Berthold L D 1978 A Model for Estimating the Effects of Surface Roughness on Mass Ejection from Shocked Materials Sandia Laboratories, SAND78-1256
[5] Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284
[6] Zellner M B, Grover M, Hammerberg J E 2007 J. Appl. Phys. 102 013522
[7] Zellner M B, Dimonte G, Germann T C 2009 AIP Conference Proceedings 1195 1047
[8] Zellner M B, McNeil W V, Hammerberg J E 2008 J. Appl. Phys. 103 123502
[9] Han C S 1989 Chin. J. High Press. Phys. 3 324 (in Chinese) [韩长生 1989 高压 3 324]
[10] Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 58 1064]
[11] Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 51 2386]
[12] Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285
[13] Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151
[14] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[15] Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45
[16] Mei J, Davenport J W 1992 Phys. Rev. B 46 21
[17] Holian B L, Lomdahl P S 1998 Science 280 2085
[18] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[19] Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817
[20] Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46
[21] Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085
[22] Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363
[23] Frachet V, Elias P, Martineau J 1988 Shock Waves in Condensed Matter (Amsterdam North-Holland) p235
[24] Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Ogorodnikov_Combustion, Explosion, and Shock Waves 34 696
-
[1] Walsh J M, Shreffler R G, Willig F G 1953 J. Appl. Phys. 24 349
[2] Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese) [朱建士, 胡晓棉, 王裴, 陈军, 许爱国 2010 力学进展 40 400]
[3] Asay J R 1976 Material Ejection from Shock-Loaded free Surface of Aluminum and Lead, Sandia Laboratories, SAND76-0542
[4] Asay J R, Berthold L D 1978 A Model for Estimating the Effects of Surface Roughness on Mass Ejection from Shocked Materials Sandia Laboratories, SAND78-1256
[5] Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284
[6] Zellner M B, Grover M, Hammerberg J E 2007 J. Appl. Phys. 102 013522
[7] Zellner M B, Dimonte G, Germann T C 2009 AIP Conference Proceedings 1195 1047
[8] Zellner M B, McNeil W V, Hammerberg J E 2008 J. Appl. Phys. 103 123502
[9] Han C S 1989 Chin. J. High Press. Phys. 3 324 (in Chinese) [韩长生 1989 高压 3 324]
[10] Wang P, Shao J L, Qin C S 2009 Acta Phys. Sin. 58 1064 (in Chinese) [王裴, 邵建立, 秦承森 2009 58 1064]
[11] Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 51 2386]
[12] Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285
[13] Chen Q F, Cao X L, Zhang Y, Cai L C, Chen D Q 2005 Chin. Phys. Lett. 22 3151
[14] Daw M S, Baskes M I 1984 Phys. Rev. B 29 6443
[15] Finnis M W, Sinclair J E 1984 Philos. Mag. A 50 45
[16] Mei J, Davenport J W 1992 Phys. Rev. B 46 21
[17] Holian B L, Lomdahl P S 1998 Science 280 2085
[18] Swope W C, Andersen H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637
[19] Irving J H, Kirkwood J G 1950 J. Chem. Phys. 18 817
[20] Allen M P, Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press) p46
[21] Kelchner C L, Plimpton S J, Hamilton J C 1998 Phys. Rev. B 58 11085
[22] Mitchell A C, Nellis W J 1981 J. Appl. Phys. 52 3363
[23] Frachet V, Elias P, Martineau J 1988 Shock Waves in Condensed Matter (Amsterdam North-Holland) p235
[24] Ogorodnikov V A, Ivanov A G, Mikhailov A L 1998 Ogorodnikov_Combustion, Explosion, and Shock Waves 34 696
计量
- 文章访问数: 6470
- PDF下载量: 510
- 被引次数: 0