Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys

Hong Hai-Lian Dong Chuang Wang Qing Zhang Yu Geng Yao-Xiang

Citation:

Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys

Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It was found previously by us that the compositions of industrial alloy specializations are related to the chemical short-range ordering in solid solution alloys, which is in accordance with the cluster-plus-glue-atom model. This model identifies short-range-ordered chemical building units in solid solutions, which the specific alloy compositions rely on. For instance, substitutional-type FCC solid solution alloys are described by cluster-based units formulated as [cluster](glue atom)16, where the bracketed cluster is the nearest-neighbor coordination polyhedral cluster, cuboctahedron in this case, and one-to-six glue atoms occupy the inter-cluster sites at the outer-shell of the cluster. In the present paper, we investigate the atomic configurations of these local units in substitutional-type FCC solid solutions by exhausting all possible cluster packing geometries and relevant cluster formulas. The structural model of stable FCC solid solutions is first reviewed. Then, solute distribution configurations in FCC lattice are analyzed by idealizing the measured chemical short-range orders within the first and second neighborhoods. Two key assumptions are made with regards to the cluster distribution in FCC lattice. First, the clusters are isolated to avoid the short-range orders from extending to longer range ones. Second, the clusters are at most separated by one glue atom to confine the inter-cluster distances. Accordingly, only a few structural unit packing modes are identified. Among them, the configurations with glue atoms 0, 1, 3, and 6 show good homogeneities which indicate special structural stabilities. Finally, compositions of FCC Cu-Zn (representative of negative enthalpy systems) and Cu-Ni (positive enthalpy ones) industrial alloys are explained by using the structure units of cluster packing and the cluster formulas, expressed as [Zn-Cu12]Zn1-6 and [Zn-Cu12](Cu, Zn)6, where the cluster is Zn-centered, shelled with Cu atoms, and glued with one to six Zn or with a mixture of six Cu and Zn. In particular, the formula [Zn-Cu12]Zn6, with the highest Zn content, corresponds to the solubility limit in Cu-Zn alpha phase zone, which is also the composition of the specification C27400. The Cu-rich Cu-Ni alloys are explained by cluster formulas [Cu-Cu12](Cu, Ni) 6, where the cluster is Cu centered and glued with a mixture of six Cu and Ni. The Ni-rich Monel alloy is explained by cluster formulas [Ni-Ni12](Cu5Ni)-[Ni-Ni12]Ni6. The present work provides a new approach to alloy composition explanation and eventually to alloy composition design from the perspective of short-range ordering in solid solutions.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174044) and the Grade A Natural Science Research Project of Fujian Province Education Department, China (Grant No. JA12306).
    [1]

    Ma Z Z, Li J Q, Tian Z M, Qiu Y, Yuan S L 2012 Chin. Phys. B 21 107503

    [2]

    Gao Q Q, Li J B, Song S J, Luo J, Rao G H, Liang J K 2012 Chin. Phys. B 21 066102

    [3]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [4]

    Liu L, Hou Q Y, Zhang Y, Jing Q M, Wang Z G, Bi Y, Xu J A, Li X D, Li Y C, Liu J 2015 Chin. Phys. B 24 066103

    [5]

    Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A, Lian J S 2014 Chin. Phys. B 23 026104

    [6]

    Gorsky W 1928 Zeitschrift fr Physik 50 64

    [7]

    Wunsch K M, Wachtel E 1981 J. Less Common Met. 80 23

    [8]

    Gu Y J Jin M J Jin X J 2009 Intermetallics 17 704

    [9]

    Gong L X 2000 J. Guizhou Normal Univ. 2000 18 48 (in Chinese) [龚伦训 2000 贵州师范大学学报 18 48]

    [10]

    Chen Z Y, Dai G T 2010 J. Chin. Three Gorges Univ. 32 100 (in Chinese) [陈志远, 戴国田 2010 32 100]

    [11]

    Cowley J M 1960 Phys. Rev. 120 1648

    [12]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J Xia J H 2007 J. Phys. D: Appl Phys. 40 R273

    [13]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hussler P 2011 Acta Mater. 59 5917

    [14]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [15]

    Robertson J L, Ice G E, Sparks C J, Jiang X, Zschack P, Bley F 1999 Phys. Rev. Lett. 82 2911

    [16]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [17]

    Hong H L, Wang Q, Dong C 2015 Sci. Chin. Mater. 58 355

    [18]

    Baker H, Okamoto H 1992 ASM Handbook Alloy Phase Diagrams (Version 10) (Ohio: ASM International) p22

    [19]

    Reinhard L, Schnfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [20]

    Abrikosov I A, Niklasson A M N, Simak S I, Johansson B, Ruban A V, Skriver H L 1996 Phys. Rev. Lett. 76 4203

    [21]

    Fiepke J W 1992 ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Version 10) (Ohio: ASM International) p1008

    [22]

    Deutsches K L 1965 Chemical Colourings of Copper and Copper Alloys (Version 1) (Sydney: Copper and Brass Information Centre) p102

    [23]

    Lohofer G, Brillo J, Egry I 2004 Int. J. Thermophys. 25 1535

    [24]

    Liu H B, Chen K Y, Hu Z Q 1997 J. Mater. Sci. Technol. 13 117

    [25]

    Vrijen J 1977 Netherlands Energy Research Foundation ECN Petten Report ECN-31

    [26]

    Stolz U K, Arpshofen I, Sommer F, Predel B 1993 J. Phase. Equilib. 14 473

  • [1]

    Ma Z Z, Li J Q, Tian Z M, Qiu Y, Yuan S L 2012 Chin. Phys. B 21 107503

    [2]

    Gao Q Q, Li J B, Song S J, Luo J, Rao G H, Liang J K 2012 Chin. Phys. B 21 066102

    [3]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [4]

    Liu L, Hou Q Y, Zhang Y, Jing Q M, Wang Z G, Bi Y, Xu J A, Li X D, Li Y C, Liu J 2015 Chin. Phys. B 24 066103

    [5]

    Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A, Lian J S 2014 Chin. Phys. B 23 026104

    [6]

    Gorsky W 1928 Zeitschrift fr Physik 50 64

    [7]

    Wunsch K M, Wachtel E 1981 J. Less Common Met. 80 23

    [8]

    Gu Y J Jin M J Jin X J 2009 Intermetallics 17 704

    [9]

    Gong L X 2000 J. Guizhou Normal Univ. 2000 18 48 (in Chinese) [龚伦训 2000 贵州师范大学学报 18 48]

    [10]

    Chen Z Y, Dai G T 2010 J. Chin. Three Gorges Univ. 32 100 (in Chinese) [陈志远, 戴国田 2010 32 100]

    [11]

    Cowley J M 1960 Phys. Rev. 120 1648

    [12]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J Xia J H 2007 J. Phys. D: Appl Phys. 40 R273

    [13]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hussler P 2011 Acta Mater. 59 5917

    [14]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [15]

    Robertson J L, Ice G E, Sparks C J, Jiang X, Zschack P, Bley F 1999 Phys. Rev. Lett. 82 2911

    [16]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [17]

    Hong H L, Wang Q, Dong C 2015 Sci. Chin. Mater. 58 355

    [18]

    Baker H, Okamoto H 1992 ASM Handbook Alloy Phase Diagrams (Version 10) (Ohio: ASM International) p22

    [19]

    Reinhard L, Schnfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [20]

    Abrikosov I A, Niklasson A M N, Simak S I, Johansson B, Ruban A V, Skriver H L 1996 Phys. Rev. Lett. 76 4203

    [21]

    Fiepke J W 1992 ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Version 10) (Ohio: ASM International) p1008

    [22]

    Deutsches K L 1965 Chemical Colourings of Copper and Copper Alloys (Version 1) (Sydney: Copper and Brass Information Centre) p102

    [23]

    Lohofer G, Brillo J, Egry I 2004 Int. J. Thermophys. 25 1535

    [24]

    Liu H B, Chen K Y, Hu Z Q 1997 J. Mater. Sci. Technol. 13 117

    [25]

    Vrijen J 1977 Netherlands Energy Research Foundation ECN Petten Report ECN-31

    [26]

    Stolz U K, Arpshofen I, Sommer F, Predel B 1993 J. Phase. Equilib. 14 473

  • [1] Liu Dong, Cui Xin-Yue, Wang Hao-Dong, Zhang Gui-Jun. Recent advances in estimating protein structure model accuracy. Acta Physica Sinica, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [2] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang. First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [3] Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin. Molecular dynamics study of special quasirandom structure of Zr-Nb alloys. Acta Physica Sinica, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [4] Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong. Molecule-like structural units in silicate-glass-forming oxides. Acta Physica Sinica, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [5] Li Dong-Mei, Han Jing-Yu, Dong Chuang. Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy. Acta Physica Sinica, 2019, 68(19): 196102. doi: 10.7498/aps.68.20190593
    [6] Ma Qi-Hui, Zhang Yu, Wang Qing, Dong Hong-Gang, Dong Chuang. Cluster formulas of Co-Al-W-base superalloys. Acta Physica Sinica, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [7] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [8] Jiang Bei-Bei, Wang Qing, Dong Chuang. A cluster-formula composition design approach based on the local short-range order in solid solution structure. Acta Physica Sinica, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [9] Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang. Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model. Acta Physica Sinica, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [10] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [11] Meng Qing-Duan, Zhang Xiao-Ling, Zhang Li-Wen, Lü Yan-Qiu. Structural modeling of 128× 128 InSb focal plane array detector. Acta Physica Sinica, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [12] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [13] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] Yan Wen-Sheng, Yin Shi-Long, Fan Jiang-Wei, Li Yu-Zhi, Liu Wen-Han, Hao Lu-Yuan, Pan Zhi-Yun, Wei Shi-Qiang. Structural transition of Fe80Cu20 alloy induced by annealing. Acta Physica Sinica, 2005, 54(12): 5707-5712. doi: 10.7498/aps.54.5707
    [15] NI JUN, WANG SHI-FAN. DETERMINATION OF ORDERED STRUCTURES IN FACE-CENTRED CUBE INTERSTITIAL SOLUTIONS. Acta Physica Sinica, 1993, 42(2): 290-296. doi: 10.7498/aps.42.290
    [16] WANG JING-HAN, CHEN JIN-CHANG, ZHAN WEN-SHAN, ZHAO JIAN-GAO, SHEN BAO-GEN, WANG XU-WEI, LI DE-XIU. THE LOCALIZATION AND CORRELATION EFFECT OF THE POTENTIAL FOR STRUCTURAL MODELLING OF BINARY AMORPHOUS ALLOY. Acta Physica Sinica, 1987, 36(2): 172-182. doi: 10.7498/aps.36.172
    [17] Wang Jing-han, Cheng Xian-an, Wang Xu-wei, Chen Bing-yu, Li De-xiu, Chen Jing-chang. A NEW CRITERION OF CONSTRUCTING THE STRUCTURAL MODEL OF BINARY AMORPHOUS ALLOYS. Acta Physica Sinica, 1986, 35(10): 1383-1389. doi: 10.7498/aps.35.1383
    [18] LIANG JING-KUI, ZHANG YU-LING, LIU HONG-BIN. A NEW TYPE OF CONTINUOUS SOLID SOLUTIONS ——THE VARIATION OF CRYSTAL STRUCTURE TYPES OF Mgx/2Li1-xIO3 WITH COMPOSITION. Acta Physica Sinica, 1980, 29(8): 1023-1032. doi: 10.7498/aps.29.1023
    [19] 关于面心立方体合金中间隙原子内耗机构的探讨. Acta Physica Sinica, 1961, 17(11): 555-558. doi: 10.7498/aps.17.555
    [20] TIN HOU-CIIAKG, TSIAO TUNG-KIANG, CHANG TSUNG-SUI. FREE ENERGY OF A SOLID SOLUTION ON A FACE-CENTRED CUBIC LATTICE. Acta Physica Sinica, 1957, 13(6): 515-524. doi: 10.7498/aps.13.515
Metrics
  • Abstract views:  7328
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2015
  • Accepted Date:  19 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回
Baidu
map