搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光器件应用改性Ge的能带结构模型

杨雯 宋建军 任远 张鹤鸣

引用本文:
Citation:

光器件应用改性Ge的能带结构模型

杨雯, 宋建军, 任远, 张鹤鸣

Band structure model of modified Ge for optical device application

Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming
PDF
导出引用
  • Ge为间接带隙半导体,通过改性技术可以转换为准直接或者直接带隙半导体.准/直接带隙改性Ge半导体载流子辐射复合效率高,应用于光器件发光效率高;同时,准/直接带隙改性Ge半导体载流子迁移率显著高于Si半导体载流子迁移率,应用于电子器件工作速度快、频率特性好.综合以上原因,准/直接带隙改性Ge具备了单片同层光电集成的应用潜力.能带结构是准/直接带隙改性Ge材料实现单片同层光电集成的理论基础之一,目前该方面的工作仍存在不足.针对该问题,本文主要开展了以下三方面工作:1)揭示了不同改性条件下Ge材料带隙类型转化规律,完善了间接转直接带隙Ge实现方法的相关理论;2)研究建立了准/直接带隙改性Ge的能带E-k模型,据此所获相关结论可为发光二极管、激光器件仿真模型提供关键参数;3)提出了准/直接带隙改性Ge的带隙调制方案,为准/直接带隙改性Ge单片同层光电集成的实现提供了理论参考.本文的研究结果量化,可为准/直接带隙改性Ge材料物理的理解,以及Ge基光互连中发光器件有源层研究设计提供重要理论依据.
    Ge is an indirect bandgap semiconductor, which can be converted into a direct bandgap semiconductor by using the modification techniques. The carrier radiation recombination efficiency of modified Ge is high, which can be used in optical devices. The mobility of Ge semiconductor carriers is higher than that of Si semiconductor carriers, so Ge device can work fast and have good frequency characteristics in electronic device. In view of the application advantages of modified Ge semiconductors in both optical devices and electrical devices, it has been a potential material of monolithic optoelectronic integration. The Ge and GeSn as optoelectronic device materials have a great competitive advantage, but there is no mature Ge-based monolithic photoelectric integration. In order to realize Ge-based optical interconnection, the bandgap of luminous tube, detector and waveguide active layer material must satisfy the following sequence:Eg,waveguide Eg,luminoustube Eg,detector. Therefore, in order to achieve the same layer monolithic photoelectric integration, we must modulate the energy band structure of the active layer material of the device. Unfortunately, the literature in this area is lacking. The band structure is one of the theoretical foundations for the monolithic photoelectric integration of the modified Ge materials, but the work in this area is still inadequate. In this paper, this problem is investigated from three aspects. 1) Based on the generalized Hooke's law and the principle of deformation potential, a modified Ge bandgap type transformation model is established under different modification conditions, perfecting the theory of converting the indirect switching into direct band gap of Ge. 2) On the basis of establishing the strain tensor and deformation potential model, a modified Ge band E-k model is established, and the relevant conclusions can provide key parameters for LED and laser device simulation models. 3) Based on the theory of solid energy band, the bandgap width modulation scheme of the modified Ge under the uniaxial stress is proposed, which provides an important theoretical reference for realizing the Ge-based single-layer photoelectric integration. The results in this paper can provide an important theoretical basis for understanding the material physics of the modified Ge and designing the active layers of the light emitting devices in the Ge based optical interconnection.
      通信作者: 杨雯, 13289999663@163.com
    • 基金项目: 高等学校学科创新引智计划(批准号:B12026)资助的课题.
      Corresponding author: Yang Wen, 13289999663@163.com
    • Funds: Project supported by the 111Project, China (Grant No. B12026).
    [1]

    Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002

    [2]

    Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715

    [3]

    Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108

    [4]

    Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201

    [5]

    Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104

    [6]

    Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907

    [7]

    Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505

    [8]

    Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715

    [9]

    Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109

    [10]

    Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332

    [11]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301

    [12]

    Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204

    [13]

    Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316

    [14]

    Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106

    [15]

    Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11

    [16]

    Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 7228]

    [17]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 64 038501]

    [18]

    Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369

    [19]

    Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358

    [20]

    Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802

  • [1]

    Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002

    [2]

    Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715

    [3]

    Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108

    [4]

    Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201

    [5]

    Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104

    [6]

    Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907

    [7]

    Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505

    [8]

    Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715

    [9]

    Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109

    [10]

    Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332

    [11]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301

    [12]

    Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204

    [13]

    Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316

    [14]

    Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106

    [15]

    Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11

    [16]

    Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 57 7228]

    [17]

    Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 64 038501]

    [18]

    Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369

    [19]

    Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358

    [20]

    Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802

  • [1] 温恒迪, 刘跃, 甄良, 李洋, 徐成彦. MoS2/MoTe2垂直异质结的电荷传输及其调制.  , 2023, 72(3): 036102. doi: 10.7498/aps.72.20221768
    [2] 周广正, 李颖, 兰天, 代京京, 王聪聪, 王智勇. 垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟.  , 2019, 68(20): 204203. doi: 10.7498/aps.68.20190529
    [3] 张振方, 郁殿龙, 刘江伟, 温激鸿. 内插扩张室声子晶体管路带隙特性研究.  , 2018, 67(7): 074301. doi: 10.7498/aps.67.20172383
    [4] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [5] 刘雪璐, 吴江滨, 罗向东, 谭平恒. 半绝缘GaAs的双调制反射光谱研究.  , 2017, 66(14): 147801. doi: 10.7498/aps.66.147801
    [6] 沈浩, 李东升, 杨德仁. 硅基光源的研究进展.  , 2015, 64(20): 204208. doi: 10.7498/aps.64.204208
    [7] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应.  , 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [8] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控.  , 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [9] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究.  , 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [10] 宫丽, 冯现徉, 逯瑶, 张昌文, 王培吉. Ta掺杂对ZnO光电材料性能影响的研究.  , 2012, 61(9): 097101. doi: 10.7498/aps.61.097101
    [11] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响.  , 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [12] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质.  , 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [13] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质.  , 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴. 梯度掺杂与均匀掺杂GaN光电阴极的对比研究.  , 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [15] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响.  , 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构.  , 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [17] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [18] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构.  , 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [19] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构.  , 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性.  , 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  7214
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 修回日期:  2018-07-24
  • 刊出日期:  2018-10-05

/

返回文章
返回
Baidu
map