-
基于He泡生长的迁移-合并机理,用Monte Carlo方法模拟了对材料进行等温退火过程中He深度分布的演化,探讨了不同参数对这一演化的影响.研究表明:材料中He泡的初始浓度和尺寸将影响He深度分布的变化,而退火温度则对演化速率起重要作用但对最终的He深度分布影响较小;随着反应的进行,整个系统的演化是逐渐趋缓的.
-
关键词:
- He /
- 深度分布 /
- Monte Carlo模拟
Based on the migration-coalescence mechanism for helium bubble growth in a material, the evolution of helium depth distribution during annealing is simulated by the Monte Carlo method. The factors that influence the evolution are studied. The results show that the initial concentration and radius of the helium bubble can affect the evolution of He depth distribution, while the annealing temperature has influence only on the evolution rate but little on the final depth distribution of helium. It is also shown that the evolution of the system turns to slow down gradually with the annealing time going.-
Keywords:
- helium /
- depth distribution /
- Monte Carlo
[1] Luklinska Z H, von Bradsky G, Goodhew P J 1985 J. Nucl. Mater. 135 206
[2] Carsughi F, Kesternich W, Schwahn D, Ullmaier H, Schroeder H 1992 J. Nucl. Mater. 191—194 1284
[3] Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510
[4] Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149 (in Chinese)[陈 敏、 汪 俊、 侯 氢 2009 58 1149]
[5] Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408 (in Chinese) [汪 俊、 侯 氢 2009 58 6408]
[6] Schwartz A J, Wall M A, Zocco T G, Wolfer W G 2005 Philos. Mag. 85 479
[7] Evans J H 2004 J. Nucl. Mater. 334 40
[8] Zheng H 2007 Acta Phys. Sin. 56 389 (in Chinese) [郑 晖 2007 56 389]
[9] Hou Q, Zhou Y L, Wang J, Deng A H 2010 J. Appl. Phys. 107 084901
[10] Sharafat S, Takahashi A, Nagasawa K, Ghoniem N 2009 J. Nucl. Mater. 389 203
[11] Galindo R E, van Veen A, Evans J H, Schut H, de Hosson J T M 2004 Nucl. Instrum. Meth. B 217 262
[12] Vedeneev A I, Lobanov V N, Starovoitova S V 1996 J. Nucl. Mater. 233—237 1189
[13] Oliviero E, Beaufort M F, Barbot J F, van Veen A, Fedorov A V 2003 J. Appl. Phys. 93 231
[14] Ono K, Arakawa K, Shibasaki H, Kurata H, Nakamichi I, Yoshida N 2004 J. Nucl. Mater. 329—333 933
[15] Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese)[李仁顺、 周宇璐、 张宝玲、 邓爱红、 侯 氢 2011 60 517 046604]
[16] Gruber E E 1967 J. Appl. Phys. 38 243
[17] Nichols F A 1969 J. Nucl. Mater. 30 143
[18] Evans J H, van Veen A, Finnis M W 1989 J. Nucl. Mater. 168 19
[19] Willertz L E, Shewmon P G 1970 Metall. Trans. 1 2217
[20] Zhou Y L, Hou Q, Wang J, Deng A H 2009 Chin. Phys. Lett. 26 090202
-
[1] Luklinska Z H, von Bradsky G, Goodhew P J 1985 J. Nucl. Mater. 135 206
[2] Carsughi F, Kesternich W, Schwahn D, Ullmaier H, Schroeder H 1992 J. Nucl. Mater. 191—194 1284
[3] Wang J, Hou Q, Sun T Y, Long X G, Wu X C, Luo S Z 2007 J. Appl. Phys. 102 093510
[4] Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149 (in Chinese)[陈 敏、 汪 俊、 侯 氢 2009 58 1149]
[5] Wang J, Hou Q 2009 Acta Phys. Sin. 58 6408 (in Chinese) [汪 俊、 侯 氢 2009 58 6408]
[6] Schwartz A J, Wall M A, Zocco T G, Wolfer W G 2005 Philos. Mag. 85 479
[7] Evans J H 2004 J. Nucl. Mater. 334 40
[8] Zheng H 2007 Acta Phys. Sin. 56 389 (in Chinese) [郑 晖 2007 56 389]
[9] Hou Q, Zhou Y L, Wang J, Deng A H 2010 J. Appl. Phys. 107 084901
[10] Sharafat S, Takahashi A, Nagasawa K, Ghoniem N 2009 J. Nucl. Mater. 389 203
[11] Galindo R E, van Veen A, Evans J H, Schut H, de Hosson J T M 2004 Nucl. Instrum. Meth. B 217 262
[12] Vedeneev A I, Lobanov V N, Starovoitova S V 1996 J. Nucl. Mater. 233—237 1189
[13] Oliviero E, Beaufort M F, Barbot J F, van Veen A, Fedorov A V 2003 J. Appl. Phys. 93 231
[14] Ono K, Arakawa K, Shibasaki H, Kurata H, Nakamichi I, Yoshida N 2004 J. Nucl. Mater. 329—333 933
[15] Li R S, Zhou Y L, Zhang B L, Deng A H, Hou Q 2011 Acta Phys. Sin. 60 046604 (in Chinese)[李仁顺、 周宇璐、 张宝玲、 邓爱红、 侯 氢 2011 60 517 046604]
[16] Gruber E E 1967 J. Appl. Phys. 38 243
[17] Nichols F A 1969 J. Nucl. Mater. 30 143
[18] Evans J H, van Veen A, Finnis M W 1989 J. Nucl. Mater. 168 19
[19] Willertz L E, Shewmon P G 1970 Metall. Trans. 1 2217
[20] Zhou Y L, Hou Q, Wang J, Deng A H 2009 Chin. Phys. Lett. 26 090202
计量
- 文章访问数: 8481
- PDF下载量: 613
- 被引次数: 0