-
Under strong impact loading, metal materials will produce deformation and show ejecta behaviors. The mixing phenomenon, due to the detached matters entering into the background fluid, has a direct influence on the compression properties. According to the researches of ejecta, the damage and mixing are closely related with the loading state and the dynamic process. Up to now, many results have already been obtained under the condition of the directive impact of detonation. Further study on the metal materials response driven by detonation collision is needed. Previous studies have focused on the macro characteristics, such as the collision uplift and destruction. In this paper, we aim at the wave system's interaction process, in order to obtain the physical detail and to reveal the mechanisms of dynamic behaviors in the collision region. Investigations are carried out by means of both the numerical simulation and the shock polar theory analysis. Planer tin flying layer calculation model is designed for numerical simulation, so the sliding wave systems and shock conditions are obtained effectively. Based on the numerical results in the plane tin flying layer, the shock polar theory forecasts that the Mach reflection will occur, and the images of wave interactions given by numerical simulation also display the three-wave structure, which is the typical structure of the Mach reflection. Quantitative comparisons between the numerical results and theoretical analysis of the shock polar are in good agreement with each other. Furthermore, the critical conditions of Mach reflection in the cases of different shock conditions are given. Meanwhile typical characteristics of the histories of free surface velocity in the collision zone are analyzed. From the numerical and theoretical analyses, the shock dynamical model in the collision zone is proposed to reveal the mechanisms, and the model is very important for investigating the collision zone problem deeply in decomposition way. The results illustrate that in the collision zone there exist multiple kinds of shock loading ways, including one-dimensional once plane impact region, two-dimensional once oblique impact region, and two-dimensional twice oblique impacts region. The complex loading dynamic processes coupling with the unsteady flow field lead to the distributions of the peak pressure at different positions in the collision zone. The corresponding destroyed behaviors are shown, and thus we can establish the relationship between the reflection wave structure and the fracture morphology of the collision zone. This research results will provide an important theoretical support for the understanding and interpretation of the physical phenomena of material deformation, damage and mixing in the collision zone.
-
Keywords:
- shock loading in the collision zone /
- dynamic behaviors /
- numerical simulation /
- shock polar theory
[1] Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349
[2] Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127
[3] Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]
[4] Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701
[5] Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502
[6] Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D
[7] Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 61 184701]
[8] Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351
[9] Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]
[10] Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177
[11] Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压 23 283]
[12] Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939
[13] Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]
[14] Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 885]
[15] Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]
[16] Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]
[17] Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 64 114702]
[18] Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]
[19] Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]
[20] Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]
-
[1] Walsh J, Shreffler R, Willig F 1953 J. Appl. Phys. 24 349
[2] Wang T, Bai J S, Li P, Zhong M 2009 Chin. Phys. B 18 1127
[3] Wang P, Sun H Q, Shao J L, Qin C S, Li X Z 2012 Acta Phys. Sin. 61 234703 (in Chinese) [王裴, 孙海权, 邵建立, 秦承森, 李欣竹 2012 61 234703]
[4] Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701
[5] Zellner M B, McNeil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502
[6] Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D
[7] Shao J L, Wang P, He A M, Qin C S 2012 Acta Phys. Sin. 61 184701 (in Chinese) [邵建立, 王裴, 何安民, 秦承森 2012 61 184701]
[8] Or D M, Hammerberg J E, Buttler W T, Mariam F G, Morris C, Rousculp C, Stone J B 2012 AIP Conf. Proc. 1426 1351
[9] Sun H Q, Wang P, Chen D W, Qin C S 2014 Explosion and shock wave 34 392 (in Chinese) [孙海权, 王裴, 陈大伟, 秦承森 2014 爆炸与冲击 34 392]
[10] Fung J, Harrison A K, Chitanvis S, Margulies J 2013 Computers Fluids 83 177
[11] Zhang C Y, Hu H B, Li Q Z, Yuan S 2009 Chinese Jounal of High Pressure Physics 23 283 (in Chinese) [张崇玉, 胡海波, 李庆忠, 袁帅 2009 高压 23 283]
[12] Singh M, Suneja H R, Bola M S, Prakash S 2002 Int. J. Impact Eng 27 939
[13] Chen J, Sun C W, Pu Z M, Zhang G S, Gao N 2003 Explosion and shock wave 23 442 (in Chinese) [陈军, 孙承纬, 蒲正美, 张光升, 高宁 2003 爆炸与冲击 23 442]
[14] Zhang C Y, Hu H B, Li Q Z 2013 Chinese jounal of high pressure physics 27 885 (in Chinese) [张崇玉, 胡海波, 李庆忠 2013 高压 27 885]
[15] Zhang S W, Hua J S, Liu C L, Han C S, Wang D S, Sun X L, Zhang Z T 2004 Explosion and Shock Wave 24 219 (in Chinese) [张世文, 华劲松, 刘仓理, 韩长生, 王德生, 孙学林, 张振涛 2004 爆炸与冲击 24 219]
[16] Zhao Y L, Xiao D S, Dai H B 2007 Journal of Ordnance Engineering College 19 30 (in Chinese) [赵永玲, 肖东胜, 戴红彬 2007 军械工程学院学报 19 30]
[17] Yu M, Sun Y T, Liu Q 2015 Acta Phys. Sin. 64 114702 (in Chinese) [于明, 孙宇涛, 刘全 2015 64 114702]
[18] Sun C W, Wei Y Z, Zhou Z K 2000 Application of Detonation Physics (Beijing: National Defence of Industry Press) p294-295 (in Chinese) [孙承纬, 卫玉章, 周之奎 2000 应用爆轰物理 (北京: 国防工业出版社) 第 294-295 页]
[19] Jia Z P, Zhang S D, Yu X J 2014 Computational method for multimaterial fluid dynamics (Beijing: Science Press) p59 (in Chinese) [贾祖朋, 张树道, 蔚喜军 2014 多介质流体动力学计算方法 (北京: 科学出版社) 第59页]
[20] Yu D S, Zhao F, Tan D W, Peng Q X, Fang Q 2006 Explosion and shock wave 26 140 (in Chinese) [虞德水, 赵锋, 谭多望, 彭其先, 方青 2006 爆炸与冲击 26 140]
Catalog
Metrics
- Abstract views: 6470
- PDF Downloads: 213
- Cited By: 0