-
针对爆轰波在炸药-金属界面上折射时由实验获得的金属折射冲击波压力与经典爆轰波极曲线理论预测的压力存在显著差异这一问题, 本文展开了进一步的理论和数值模拟分析研究. 首先通过分析指出经典爆轰波极曲线理论的缺陷, 并对爆轰波极曲线理论进行了改进, 改进爆轰波极曲线理论给出了炸药爆轰波折射类型以及折射冲击作用点处的压力值. 然后发展了一个基于次特征理论来数值求解爆轰反应流动控制方程的二阶中心型Lagrange方法, 并数值模拟了一个典型的炸药爆轰波折射实验. 改进爆轰波极曲线理论和数值模拟分析结果表明, 爆轰波折射类型有三种:反射冲击波的正规折射、带Mach反射的非正规折射、无反射波的正规折射, 并且金属折射冲击波压力值随入射角增大而单调减小.This paper analyzes theoretically and numerically the refraction phenomenon of detonation wave at the explosive-metal interface, motivated by the problem that there exist large discrepancies between the experimental results and the classical shock polar theory. After pointing out the major defects of the classical shock polar theory based on CJ model of detonation, an improved shock polar theory based on ZND model of detonation is presented to give the styles of the refraction of detonation wave and the pressure values at the interaction point between the refracted shock wave and the incident shock wave, to show the pressure values at free-surface of copper remarkably lower than the ones at the shock interaction point due to the attenuation effects from the chemical reaction expansion and the following Taylor rarefaction. A second-order cell-centered Lagrangian hydrodynamics method with high resolution based on the subcharacteristics theory is develped to solve the reactive flow equations of detonation in condensed explosive, and then to numerically simulate a representative refraction experiment about T2 explosive interacting with copper. The simulated pressure values at the interaction point agree well with the ones from the improved shock polar theory, and the simulated pressure values at free-surface of copper agree well with the experimental values, meanwhile, the refraction styles predicted by the improved shock polar theory are confirmed by the numerically simulated flowfield images. From the theoretical and numerical results, there exist three kinds of refraction styles of detonation waves at explosive-metal interface:i) the regular refraction with reflecting shock wave, ii) the irregular refraction with Mach reflection, and iii) the regular refraction without any reflecting wave; in particular, the regular refraction with no reflecting wave is a kind of refraction style unable to be predicted by the classical shock polar theory, meanwhile, the pressure values at the free-surface and the interaction point inside the shocked metal both monotonically decrease with the increase of the incident angle.
-
Keywords:
- detonation wave /
- refraction /
- shock polar theory /
- ZND model
[1] Sternberg H M, Piacesi D 1966 J. Phys. Fluids 9 1307
[2] Wang J H 1982 Explosion and Shock Wave 2 1 (in Chinese) [王继海 1982 爆炸与冲击 2 1]
[3] Cheret R, C. R. Acad. Sc. Paris, T. 303, Serie Ⅱ, No. 1, 1986
[4] Walsh J M, Shock Waves in Condensed Matter, 1987, Elsevier Science Publisher B. V., 3
[5] Aveille J 1989 9th Symposium (International) on Detonation, Portland, Oregon, 842-851
[6] Tarver C M, McGuire E M 2002 12th Symposium (International) on Detonation, San Diego, California, 641-649
[7] Zhao Y H, Liu H F 2007 Acta Phys. Sin. 56 4791 (in Chinese) [赵艳红, 刘海风 2007 56 4791]
[8] Sun Y T, Jia Z P, Yu M 2012 Chinese J. Comp. Phys. 29 45 (in Chinese) [孙宇涛, 贾祖朋, 于明 2012 计算物理 29 45]
[9] Sun C W 2000 Applied Detonation Physics (Beijing:Defense Industry Press) (in Chinese) [孙承纬 2000 应用爆轰物理(北京:国防工业出版社]
[10] Wilkins M L 1963 ADA395185, California University Livermore Radiation Laboratory
[11] Zhang B P, Jiang C L 1992 Trans. Beijing Institute of Technology 1 26 (in Chinese) [张宝坪, 姜春兰 1992 北京理工大学学报 1 26]
[12] Zhao F 2009 Physics 38 894 (in Chinese) [赵锋 2009 物理 38 894]
[13] Yu M, Zhang W H 2014 Explosion and Shock Wave 34 300 (in Chinese) [于明, 张文宏 2014 爆炸与冲击 34 300]
-
[1] Sternberg H M, Piacesi D 1966 J. Phys. Fluids 9 1307
[2] Wang J H 1982 Explosion and Shock Wave 2 1 (in Chinese) [王继海 1982 爆炸与冲击 2 1]
[3] Cheret R, C. R. Acad. Sc. Paris, T. 303, Serie Ⅱ, No. 1, 1986
[4] Walsh J M, Shock Waves in Condensed Matter, 1987, Elsevier Science Publisher B. V., 3
[5] Aveille J 1989 9th Symposium (International) on Detonation, Portland, Oregon, 842-851
[6] Tarver C M, McGuire E M 2002 12th Symposium (International) on Detonation, San Diego, California, 641-649
[7] Zhao Y H, Liu H F 2007 Acta Phys. Sin. 56 4791 (in Chinese) [赵艳红, 刘海风 2007 56 4791]
[8] Sun Y T, Jia Z P, Yu M 2012 Chinese J. Comp. Phys. 29 45 (in Chinese) [孙宇涛, 贾祖朋, 于明 2012 计算物理 29 45]
[9] Sun C W 2000 Applied Detonation Physics (Beijing:Defense Industry Press) (in Chinese) [孙承纬 2000 应用爆轰物理(北京:国防工业出版社]
[10] Wilkins M L 1963 ADA395185, California University Livermore Radiation Laboratory
[11] Zhang B P, Jiang C L 1992 Trans. Beijing Institute of Technology 1 26 (in Chinese) [张宝坪, 姜春兰 1992 北京理工大学学报 1 26]
[12] Zhao F 2009 Physics 38 894 (in Chinese) [赵锋 2009 物理 38 894]
[13] Yu M, Zhang W H 2014 Explosion and Shock Wave 34 300 (in Chinese) [于明, 张文宏 2014 爆炸与冲击 34 300]
计量
- 文章访问数: 6981
- PDF下载量: 220
- 被引次数: 0