-
Plasma immersion ion implantation (PIII) of the square target with finite length is simulated using a three-dimensional particle-in-cell (PIC) plasma simulation in this paper. The incident dose, the impact angle and the implanted energy on the target surface are investigated. The results show that the sheath around the square target with finite length becomes spherical rapidly during PIII. And the three-dimensional sheath width is small apparently compared with the one simulated by two-dimensional PIC. And it is found that the three-dimensional ion dose is not evenly distributed on the target surface during simulation time (50-1pi) in this work. The dose is smallest in the center of the target, and it is largest near the corner. This is due to spherical sheath where ions are focused and accelerated into near the corner. In the central zone, the ion incidence is nearly normal to the surface, and the impact average energy exceeds 90% of the maximum. But the impact angle near the corner is always nearly 45, and the implanted energy is only about 50% of the maximum.
-
Keywords:
- plasma immersion ion implantation /
- numerical simulation /
- three-dimensional particle-in-cell /
- cubic target with finite length
[1] Conrad J R, Radtke J L, Dodd R A, Worzala F J, Tran N C 1987 J. Appl. Phys. 62 4591
[2] Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春、王友年 2004 53 2667]
[3] [4] Lu Q, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303
[5] [6] Huang Y X, Tian X B, Yang S Q, Fu R, Chu K P 2007 Acta Phys. Sin. 56 4762 (in Chinese) [黄永宪、田修波、杨士勤、Fu R、Chu K P 2007 56 4762]
[7] [8] [9] Vervisch V, Etienne H, Torregrosa F, Roux L, Ottaviani L, Pasquinelli M, Sarnet T, Delaporte P 2006 J. Vac. Sci. Technol. B 26 286
[10] Tian X B, Peng P, Chu P K 2003 Nucl. Instrum. Meth. Phys. Res. B 206 673
[11] [12] [13] Sheridan T E 1997 J. Appl. Phys. 81 7153
[14] Sheridan T E 1996 J. Phys. D 29 2725
[15] [16] [17] Sun Q, Gu C X, Ma X X, Xia L F 2004 Modell. Simul. Mater. Sci. Eng. 12 215
[18] [19] Kwok D T K, Chu P K 1998 IEEE Trans. Plasma Sci. 26 1669
[20] [21] Liu C S, Wang D Z, Liu T W, Wang Y H 2008 Acta Phys. Sin. 57 6450 (in Chinese) [刘成森、王德真、刘天伟、王艳辉 2008 57 6450]
[22] [23] Liu C S, Han H Y, Peng X Q, Chang Y, Wang D Z 2010 Chin. Phys. B 19 035201
[24] [25] Huber P, Keller G, Gerlach J W 2000 Nucl. Instrum. Meth. Phys. Res. B 161163 1085
[26] [27] Kwok D T K, Fu R K Y, Chu P K 2002 Surf. Coat. Technol. 156 97
[28] [29] Chu P K, Fu R K Y, Zeng X C, Kwok D T K 2001 J. Appl. Phys. 90 3743
-
[1] Conrad J R, Radtke J L, Dodd R A, Worzala F J, Tran N C 1987 J. Appl. Phys. 62 4591
[2] Li X C, Wang Y N 2004 Acta Phys. Sin. 53 2667 (in Chinese) [李雪春、王友年 2004 53 2667]
[3] [4] Lu Q, Li L H, Fu R K Y, Chu P K 2008 J. Appl. Phys. 104 043303
[5] [6] Huang Y X, Tian X B, Yang S Q, Fu R, Chu K P 2007 Acta Phys. Sin. 56 4762 (in Chinese) [黄永宪、田修波、杨士勤、Fu R、Chu K P 2007 56 4762]
[7] [8] [9] Vervisch V, Etienne H, Torregrosa F, Roux L, Ottaviani L, Pasquinelli M, Sarnet T, Delaporte P 2006 J. Vac. Sci. Technol. B 26 286
[10] Tian X B, Peng P, Chu P K 2003 Nucl. Instrum. Meth. Phys. Res. B 206 673
[11] [12] [13] Sheridan T E 1997 J. Appl. Phys. 81 7153
[14] Sheridan T E 1996 J. Phys. D 29 2725
[15] [16] [17] Sun Q, Gu C X, Ma X X, Xia L F 2004 Modell. Simul. Mater. Sci. Eng. 12 215
[18] [19] Kwok D T K, Chu P K 1998 IEEE Trans. Plasma Sci. 26 1669
[20] [21] Liu C S, Wang D Z, Liu T W, Wang Y H 2008 Acta Phys. Sin. 57 6450 (in Chinese) [刘成森、王德真、刘天伟、王艳辉 2008 57 6450]
[22] [23] Liu C S, Han H Y, Peng X Q, Chang Y, Wang D Z 2010 Chin. Phys. B 19 035201
[24] [25] Huber P, Keller G, Gerlach J W 2000 Nucl. Instrum. Meth. Phys. Res. B 161163 1085
[26] [27] Kwok D T K, Fu R K Y, Chu P K 2002 Surf. Coat. Technol. 156 97
[28] [29] Chu P K, Fu R K Y, Zeng X C, Kwok D T K 2001 J. Appl. Phys. 90 3743
Catalog
Metrics
- Abstract views: 7235
- PDF Downloads: 779
- Cited By: 0