Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna

Xiong Zhi-Cheng Zhu Li-Lin Liu Cheng Gao Shu-Mei Zhu Jian-Qiang

Citation:

High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna

Xiong Zhi-Cheng, Zhu Li-Lin, Liu Cheng, Gao Shu-Mei, Zhu Jian-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Micro-nano structure optical device based on surface plasmon polariton such as super lens, micro-nano resonators and waveguides, etc. owns great applications in different research fields, especially in integrated optics and nanophotonics, for it has extremely small size and can be integrated into a micro-nano optical system. Comparatively, the directional wave exciter attracts much attention since it breaks the symmetries of wave propagation and excitation and can be applied to a micro-nano optical logic modulation system in the future. In order to realize the high-efficiency directional excitation in ultra-small structure based on surface plasmon polariton, a newly designed metal insulator metal waveguide based surface plasmon directional exciter with multiple channels and nano antenna is presented in this paper. The basic structure of the surface plasmon directional exciter is a two-slit metal plate, and the directional propagation surface plasmon wave is generated according to wave interference. To obtain a single surface plasmon wave in the specific orientation, a phase difference of π/2 between the surface waves generated by slits is necessary. To achieve the different phase differences, both heights and widths of the channels are calculated according to the waveguide mode function. It is worth noting that the directional wave exciter with dual channels is able to generate unsymmetrical wave propagation, however, the excitation efficiency is rather low, which restricts its potential applications in micro-nano optical system. In the paper, in order to further raise the coupling efficiency of the excited surface plasmon wave, and increase its propagation, other additional channels are designed in the directional wave exciter structure. Compared with the traditional dual channel system, the additional channels with similar parameters, and the same interference features are introduced in the surface plasmon directional exciter to increase the light transmission and surface wave energy. In addition, a nano antenna structure based on resonance is presented on the structure surface to enhance the surface plasmon excitation as well. The design tactics of the directional surface plasmon wave exciter are analytically explained in the paper. With numerical calculation based on the finite difference time domain method, the simulation result proves that the proposed surface plasmon wave directional exciter is able to generate single orientation surface wave with extremely high coupling ratio. Moreover, with additional multiple channels and nano antenna, the energy of the directional coupled surface plasmon wave is improved obviously, which indicates that the propagation distance of the surface plasmon wave is increased. In the simulation, both the additional channels and nano antenna are able to increase the energy and propagation distance of the surface plasmon wave obviously: the energies of directional propagated surface plasmon waves of four and six channel directional wave exciters with nano antenna are 6.74 times and 9.30 times that of the traditional dual slit directional wave exciter without nano antenna, respectively. Moreover, it is worth noting that the newly designed nano antenna based multi-channel enhanced surface plasmon wave directional exciter owns compact structure and can be easily fabricated at low cost. It is believed that this work can be an important reference for designing micro and nano photonic and plasmonic elements in integrated optics.
      Corresponding author: Liu Cheng, cheng.liu@hotmail.co.uk
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2012548, BK20130162).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [3]

    Goh X M, Lin L, Roberts A 2011 Opt. Soc. Am. B 28 547

    [4]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [5]

    Wang C, Chen J J, Tang W H, Xiao J H 2012 Chin. Phys. Lett. 29 127304

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 62 060703]

    [8]

    O'Carroll D M, Hofmann C E, Atwater H A 2010 Adv. Mater. 22 1223

    [9]

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301 (in Chinese) [陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 64 097301]

    [10]

    Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [11]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [12]

    Lo'pez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [13]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [14]

    Mueller J P B, Leosson K, Capasso F 2014 Nano Lett. 14 5530

    [15]

    Rodríguez-Fortuõ F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [16]

    Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2014 Appl. Phys. Lett. 105 231101

    [17]

    Lu F, Sun L, Wang J, Li K, Xu A S 2014 Appl. Phys. Lett. 105 091112

    [18]

    Lu F, Li K, He Z J, Liu D L, Xu A S 2014 IEEE Photon. Technol. Lett. 26 1730

    [19]

    Wang Y K, Wang J C, Gao S M, Liu C 2013 Appl. Phys. Express 6 022003

    [20]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [21]

    Shi H F, Wang C T, Du C, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [22]

    Cui Y, He S 2009 Opt. Lett. 34 16

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451

    [3]

    Goh X M, Lin L, Roberts A 2011 Opt. Soc. Am. B 28 547

    [4]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [5]

    Wang C, Chen J J, Tang W H, Xiao J H 2012 Chin. Phys. Lett. 29 127304

    [6]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [7]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 62 060703]

    [8]

    O'Carroll D M, Hofmann C E, Atwater H A 2010 Adv. Mater. 22 1223

    [9]

    Lu Y Q, Hu S L, Lu Y, Xu J, Wang J 2015 Acta Phys. Sin. 64 097301 (in Chinese) [陆云清, 呼斯楞, 陆懿, 许吉, 王瑾 2015 64 097301]

    [10]

    Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J, Bartoli F J 2007 Appl. Phys. Lett. 90 161130

    [11]

    Zhou Y J, Cui T J 2011 Appl. Phys. Lett. 98 221901

    [12]

    Lo'pez-Tejeira F, Rodrigo S G, Martin-Moreno L, Garcia-Vidal F J, Devaux E, Ebbesen T W, Krenn J R, Radko I P, Bozhevolnyi S I, Gonzalez M U, Weeber J C, Dereux A 2007 Nat. Phys. 3 324

    [13]

    Lin J, Mueller J P B, Wang Q, Yuan G H, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [14]

    Mueller J P B, Leosson K, Capasso F 2014 Nano Lett. 14 5530

    [15]

    Rodríguez-Fortuõ F J, Marino G, Ginzburg P, O'Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [16]

    Zhang Y F, Wang H M, Liao H M, Li Z, Sun C W, Chen J J, Gong Q H 2014 Appl. Phys. Lett. 105 231101

    [17]

    Lu F, Sun L, Wang J, Li K, Xu A S 2014 Appl. Phys. Lett. 105 091112

    [18]

    Lu F, Li K, He Z J, Liu D L, Xu A S 2014 IEEE Photon. Technol. Lett. 26 1730

    [19]

    Wang Y K, Wang J C, Gao S M, Liu C 2013 Appl. Phys. Express 6 022003

    [20]

    Gordon R, Brolo A G 2005 Opt. Express 13 1933

    [21]

    Shi H F, Wang C T, Du C, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [22]

    Cui Y, He S 2009 Opt. Lett. 34 16

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, 2024, 73(14): 144202. doi: 10.7498/aps.73.20240521
    [3] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [4] Zhang Li-Sheng. Photocatalytic properties of gold nanoarrays driven by surface plasmon. Acta Physica Sinica, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [5] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [6] Cai Xin-Yang, Wang Xin-Wei, Zhang Yu-Ping, Wang Deng-Kui, Fang Xuan, Fang Dan, Wang Xiao-Hua, Wei Zhi-Peng. Reduction of surface plasma loss of indium tin oxide thin films by regulating substrate temperature. Acta Physica Sinica, 2018, 67(18): 180201. doi: 10.7498/aps.67.20180794
    [7] Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai. DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Acta Physica Sinica, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [8] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [9] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] Huang Hong, Zhao Qing, Jiao Jiao, Liang Gao-Feng, Huang Xiao-Ping. Study of plasmonic nanolaser based on the deep subwavelength scale. Acta Physica Sinica, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [11] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [12] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [13] Zhang Zhi-Dong, Xiong Zu-Hong, Zhang Zhong-Yue, Wang Hong-Yan, Li Xue-Lian. Enhancing electric fields around nanospheresby parallel clapboards. Acta Physica Sinica, 2011, 60(4): 047807. doi: 10.7498/aps.60.047807
    [14] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [15] Li Shan, Zhong Ming-Liang, Zhang Li-Jie, Xiong Zu-Hong, Zhang Zhong-Yue. Effects of incident polarization and electric field coupling on the surface plasmon properties of square hollow Ag nanostructures. Acta Physica Sinica, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [16] Chen Hua, Wang Li. Terahertz surface plasmon polariton couping on brass rods. Acta Physica Sinica, 2009, 58(7): 4605-4609. doi: 10.7498/aps.58.4605
    [17] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [18] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [19] Hua Lei, Song Guo-Feng, Guo Bao-Shan, Wang Wei-Min, Zhang Yu. Enhanced mid-infrared transmission in heavily doped n-type semiconductor film based on surface plasmons. Acta Physica Sinica, 2008, 57(11): 7210-7215. doi: 10.7498/aps.57.7210
    [20] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
Metrics
  • Abstract views:  7389
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2015
  • Accepted Date:  05 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map