Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction

Zhang Hua Chen Shao-Ping Long Yang Fan Wen-Hao Wang Wen-Xian Meng Qing-Sen

Citation:

Thermoelectric transport mechanism of Mg2Si0.4Sn0.6-yBiy prepared by low-temperature microwave reaction

Zhang Hua, Chen Shao-Ping, Long Yang, Fan Wen-Hao, Wang Wen-Xian, Meng Qing-Sen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to Debye relaxation, the polarization of electric dipole can be accomplished in 10-10 s under the action of an alternating electromagnetic filed with a frequency of 2.45 GHz, so it is feasible to obtain nano powder by carrying out solid reaction in microwave at low temperature in a short time. In this work, the syntheses of Mg2Si0.4Sn0.6-yBiy (0 ≤ y ≤ 0.03) solid solution thermoelectric materials are successfully achieved by microwave-assisted solid state reaction at low temperature with MgH2 serving as one reactant instead of Mg, and their transportation mechanisms are studied based on the SPB (single parabolic band) model as well. The results indicate that the volatilization and oxidation of Mg can be suppressed effectively in this process. Fine stoichiometric product can be achieved with nano-lamellar structure with an interlayer spacing of about 100 nm by carrying out the reaction between MgH2 and Si, Sn in microwave at 400℃ in 15 min. The introduction of Bi dopant can increase carrier concentration and lattice distortion. With the cooperation between the nano lamellar structure and lattice distortion, the phone is scattered so effectively that the sample owns a lowest thermal conductivity, κmin of 1.36 W·m-1·K-1 at 550 K based on the fact that the phonon scattering is dominant in the heat transfer process. The calculated results show that the theoretical κmin is 0.93 W·m-1·K-1, which is lower than 1.36 W·m-1·K-1. Therefore, by further adjusting the process parameters and increasing the effective doping rate of Bi and the density of the lattice defects, it is expected to obtain lower thermal conductivity. The band convergence is also verified by increasing the density-of-state effective mass. The apparent increase in m* is due to a gradual increase in carrier concentration with increasing temperature. Despite the agreement between the data and the model, the irregular behavior between m* and temperature is a very strong indication and the electric transmission performance of the sample is likely to be influenced by the structure of the multi band structure. Owing possibly to the low reaction temperature, there are Bi precipitates at the grain boundary. In addition to the phonon scattering and the alloy scattering, the Bi segregation and the scattering of carrier by nano-lamellar structure make the carrier mobility of the sample slightly lower. The lower effective doping rate and complex band structure make the carrier concentration and density-of-state effective mass low coupled with the low carrier mobility, which leads to low material factor β with a ZT of 0.66 at 600 K consequently.
      Corresponding author: Chen Shao-Ping, sxchengshaoping@163.com;fanwenhao1979@163.com ; Fan Wen-Hao, sxchengshaoping@163.com;fanwenhao1979@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51101111, 51405328), the Shanxi Provincial Foundation for Leaders of Disciplines in Science, China, and the Shanxi Provincial Foundation for Returned Scholars, China (Grant Nos. 2012-031, 2012-033).
    [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106

    [3]

    Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101

    [4]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [5]

    Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]

    [7]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893

    [8]

    Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901

    [9]

    Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109

    [10]

    Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [11]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333

    [12]

    Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805

    [13]

    Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251

    [14]

    Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61

    [15]

    Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838

    [16]

    Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653

    [17]

    Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]

    [18]

    Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104

    [19]

    May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17

    [20]

    Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259

    [21]

    Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663

    [22]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336

    [23]

    Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]

    [24]

    Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11

    [25]

    Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30

    [26]

    Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776

  • [1]

    Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Yu, Vedernikov M V 2006 Phys. Rev. B 74 045207

    [2]

    Culp S R, Poon S J, Hickman N, Tritt T M, Blumm J 2006 Appl. Phys. Lett. 88 042106

    [3]

    Kumar P, Kashyap S C, Sharma V K, Cupta H C 2015 Chin. Phys. B 24 098101

    [4]

    Yang M J, Shen Q, Zhang L M 2011 Chin. Phys. B 20 106202

    [5]

    Zhang Y C, He J Z, Xiao Y L, Liang H N 2014 Mod. Phys. Lett. 28 1450018

    [6]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]

    [7]

    Liu W, Chi H, Sun H, Zhang Q, Yin K, Tang X F, Zhang Q J, Uher C 2014 Phys. Chem. Chem. Phys. 16 6893

    [8]

    Zhang X, Liu H, Lu Q, Zhang J X, Zhang F P 2013 Appl. Phys. Lett. 103 063901

    [9]

    Zhang Q, He J, Zhu T J, Zhang S N, Zhao X B, Tritt T M 2008 Appl. Phys. Lett. 93 102109

    [10]

    Liu X H, Zhu T J, Wang H, Hu L P, Xie H H, Jiang G Y, Snyder G J, Zhao X B 2013 Adv. Energy Mater. 3 1238

    [11]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333

    [12]

    Yi T H, Chen S P, Li S, Yang H, Bux S, Bian Z X, Katcho N A, Shakouri A, Mingo N, Fleurial J P, Browning N D, Kauzlarich S M 2012 J. Mater. Chem. 47 24805

    [13]

    Chen S P, Zhang X, Fan W H, Yi T H, Quach D V, Bux S, Meng Q S, Kauzlarich S M, Munir Z A 2015 J. Alloys Compd. 625 251

    [14]

    Berthebaud D, Gascoin F 2013 J. Solid State Chem. 202 61

    [15]

    Du Z L, Zhu T J, Chen Y, He J, Gao H L, Jiang G Y, Tritt T M, Zhao X B 2012 J. Mater. Chem. 22 6838

    [16]

    Liu W, Tang X F, Li H, Yin K, Sharp J, Zhou X Y, Uher C 2012 J. Mater. Chem. 22 13653

    [17]

    Xu H J, Shi J Y, Ruan Y Z 2001 Material Science Foundation (Beijing: Beijing University of Technology Press) p281 (in Chinese) [徐恒军, 石巨岩, 阮玉忠 2001 材料科学基础(北京: 北京工业出版社)第281页]

    [18]

    Gao P, Lu X, Berkun I, Schmidt R D, Hogan T P 2014 Appl. Phys. Lett. 105 202104

    [19]

    May A F, Snyder G J 2012 Materials, Preparation, and Characterization in Thermoelectrics (Boca Raton: CRC Press) pp11.1-11.17

    [20]

    Bux S K, Yeung M T, Toberer E S, Snyder G J, Kaner R B, Fleurial J P 2011 J. Mater. Chem. 21 12259

    [21]

    Blunt R F, Frederikse H P R, Hosler W R 1955 Phys. Rev. 100 663

    [22]

    Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 336

    [23]

    Yan J K 2009 Ph. D. Dissertation (Kunming: Kunming University of Science and Technology) (in Chinese) [严继康 2009 博士学位论文 (昆明: 昆明理工大学)]

    [24]

    Seo J W, Kim C M, Park K 2015 Powder Technol. 278 11

    [25]

    Chen X, Shi L, Zhou J, Goodenough J B 2015 J. Alloy Compd. 641 30

    [26]

    Jiang G Y, He J, Zhu T J, Fu C, Liu X, Hu L, Zhao X B 2014 Adv. Funct. Mater. 24 3776

  • [1] Qu Kui, Zhang Rong-Fu, Xiao Peng-Cheng. Real-time detection algorithm of object motion state based on frequency modulated continuous wave radar. Acta Physica Sinica, 2021, 70(19): 198402. doi: 10.7498/aps.70.20210205
    [2] Dong Xu, Huang Yong-Sheng, Tang Guang-Yi, Chen Shan-Hong, Si Mei-Yu, Zhang Jian-Yong. Circular electron-positron collider beam energy measurement scheme based on microwave-electronic Compton backscattering. Acta Physica Sinica, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [3] Yuan Guo-Cai, Chen Xi, Huang Yu-Yang, Mao Jun-Xi, Yu Jin-Qiu, Lei Xiao-Bo, Zhang Qin-Yong. Comparative study of thermoelectric properties of Mg2Si0.3Sn0.7 doped by Ag or Li. Acta Physica Sinica, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [4] Meng Dai-Yi, Shen Lan-Xian, Li De-Cong, Shai Xu-Xia, Deng Shu-Kang. Structural and electrical transport properties of Mg-doped n-type Sn-based type Ⅷ single crystalline clathrate. Acta Physica Sinica, 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [5] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [6] Zhou Dong-Fang, Yu Dao-Jie, Yang Jian-Hong, Hou De-Ting, Xia Wei, Hu Tao, Lin Jing-Yu, Rao Yu-Ping, Wei Jin-Jin, Zhang De-Wei, Wang Li-Ping. Theoretical and experimental investigation of air breakdown on single high power microwave based on the mixed-atmosphere propagation model. Acta Physica Sinica, 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [7] Wang Feng, Jia Guo-Zhu, Liu Li, Liu Feng-Hai, Liang Wen-Hai. Temperature dependent dielectric of aqueous NaCl solution at microwave frequency. Acta Physica Sinica, 2013, 62(4): 048701. doi: 10.7498/aps.62.048701
    [8] Ding Shuai, Wang Bing-Zhong, Ge Guang-Ding, Wang Duo, Zhao De-Shuang. Realization of microwave wave signal time reversal based on time lens theory. Acta Physica Sinica, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [9] Yang Jing, Liu Guo-Bin, Gu Si-Hong. Experimentally studying the scheme on exciting coherent population trapping resonances with lin//lin configuration. Acta Physica Sinica, 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [10] Peng Hua, Wang Chun-Lei, Li Ji-Chao, Wang Hong-Chao, Wang Mei-Xiao. Theoretical investigation of the electronic structure and thermoelectric transport property of Mg2Si. Acta Physica Sinica, 2010, 59(6): 4123-4129. doi: 10.7498/aps.59.4123
    [11] Liu Xi-Chuan, Gao Tai-Chang, Qin Jian, Liu Lei. Effects analysis of rainfall on microwave transmission characteristics. Acta Physica Sinica, 2010, 59(3): 2156-2162. doi: 10.7498/aps.59.2156
    [12] Zheng Hong, Yang Cheng-Tao. Magnetoelectric film under interaction of microwave. Acta Physica Sinica, 2010, 59(7): 5055-5060. doi: 10.7498/aps.59.5055
    [13] Xiong Cong, Deng Shu-Kang, Tang Xin-Feng, Qi Qiong, Zhang Qing-Jie. Thermoelectric transport properties of Zn-doped n-type Ba8Ga16-2xZnxGe30+x clathrates. Acta Physica Sinica, 2008, 57(2): 1190-1196. doi: 10.7498/aps.57.1190
    [14] Yan Yong-Gao, Tang Xin-Feng, Liu Hai-Jun, Yin Ling-Ling, Zhang Qing-Jie. Thermoelectric properties of nonstoichiometric Ag1-xPb18SbTe20 materials. Acta Physica Sinica, 2007, 56(6): 3473-3478. doi: 10.7498/aps.56.3473
    [15] Wang Shu-Fang, Jin B. B., Liu Zhen, Zhou Yue-Liang, Chen Zheng-Hao, Lü Hui-Bin, Cheng Bo-Lin, Yang Guo-Zhen. Microwave measurements of the MgB2 thin film. Acta Physica Sinica, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [16] LIU XIAO-YA, LI QUAN, JIANG GANG, ZHU ZHENG-HECHEN, HAN-DE, JIN XING-XING, TANG YONG-JIAN. THE MECHANISM OF MICROWAVE EXCITATION IN ArS2 SYSTEM. Acta Physica Sinica, 2000, 49(12): 2340-2346. doi: 10.7498/aps.49.2340
    [17] DING WU. MECHANISM OF MICROWAVE GENERATION IN SUPER-RELTRON. Acta Physica Sinica, 1997, 46(11): 2180-2187. doi: 10.7498/aps.46.2180
    [18] LIU MEI, LIU WEI, CAO SHU, XING DIN-YU. HOT ELECTRON THERMOELECTRIC POWER UNDER A MICROWAVE FIELD. Acta Physica Sinica, 1995, 44(12): 1977-1983. doi: 10.7498/aps.44.1977
    [19] WAN MEI-XIANG. STUDIES ON ABSORPTION MECHANISM OF MICROWAVE ABSORBENT OF CONDUCTING POLYMERS. Acta Physica Sinica, 1992, 41(6): 917-923. doi: 10.7498/aps.41.917
    [20] TAN WEI-HAN, LIU REN-HONG. THE PARABOLA APPROXIMATION TO THE BIFURCATION THEORY. Acta Physica Sinica, 1990, 39(7): 35-39. doi: 10.7498/aps.39.35-2
Metrics
  • Abstract views:  5875
  • PDF Downloads:  178
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2015
  • Accepted Date:  23 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map