-
The membrane composed of carbon nanotube arrays may be widely used in biological molecular devices, image display area and optoelectronic devices. In this paper, the water permeability of the (11, 11) carbon nanotube arrays is simulated by using the SPC/E water model and the molecular dynamics program LAMMPS at 300 K. It is found that the distance between carbon nanotubes has a significant impact on water density distribution and the electric dipole moment orientation. Regardless of the distance between the neighboring tubes, water molecules will get into the nanotubes and form a double-layer cylindrical ring structure inside the nanotubes. However, water molecules can fill into the interstitial space of the nanotube array only when the nearest distance between the neighbor the tubes is greater than 3.4 Å, or the interstitial cross area becomes greater than 57.91 Å2. As the interstitial space increases, the structure of water molecules in the interstitial space will evolve from disconnected single-file chains to boundary-shared close-packing-like columnar circles. Meanwhile, the radius of the water ring inside the nanotube will increase and its boundary becomes more sharp due to the attractions from those water molecules filled in the interstitial space. Relative to the tube axis, the distributions of the water molecular electric dipole moments in the interstitial space depend upon water structures. Under the condition of single-file chain, the distribution exhibits a bimodal characteristic, which is very similar to the distribution of water dipole moments inside the nanotube. Whereas, for the boundary-shared close-packing-like water columnar circle, the distribution of dipole moments shows a unimodal characteristic and the peak corresponds to the angle 90°. This indicates that the preferred orientation of the water dipoles points to the direction perpendicular to the tube axis. These conclusions are helpful in the understanding of the water transport properties in carbon nanotube arrays.
-
Keywords:
- molecular dynamics /
- carbon nanotube array /
- water molecules /
- permeability
[1] De Groot B L, Grubmller H 2001 Science 294 2353
[2] Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609
[3] Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755
[4] Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872
[5] Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44
[6] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034
[7] Corry B 2008 J. Phys. Chem. B 112 1427
[8] Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014
[9] Duan W H, Wang Q 2010 ACS Nano 4 2338
[10] Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502
[11] Su J, Guo H 2011 ACS Nano 5 351
[12] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275
[13] Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 64 116101]
[14] Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103
[15] Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043
[16] Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171
[17] Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559
[18] Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608
[19] Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175
[20] Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802
[21] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[22] Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[25] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472
[26] Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414
[27] Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505
[28] Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 63 086102]
[29] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345
[30] Nosé S 2002 Mol. Phys. 100 191
[31] Hoover W G 1985 Phys. Rev. A 31 1695
[32] Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1
[33] Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780
-
[1] De Groot B L, Grubmller H 2001 Science 294 2353
[2] Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609
[3] Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755
[4] Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872
[5] Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44
[6] Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034
[7] Corry B 2008 J. Phys. Chem. B 112 1427
[8] Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014
[9] Duan W H, Wang Q 2010 ACS Nano 4 2338
[10] Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502
[11] Su J, Guo H 2011 ACS Nano 5 351
[12] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275
[13] Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 64 116101]
[14] Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103
[15] Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043
[16] Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171
[17] Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559
[18] Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608
[19] Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175
[20] Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802
[21] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[22] Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269
[25] Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472
[26] Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414
[27] Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505
[28] Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 63 086102]
[29] Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345
[30] Nosé S 2002 Mol. Phys. 100 191
[31] Hoover W G 1985 Phys. Rev. A 31 1695
[32] Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1
[33] Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780
Catalog
Metrics
- Abstract views: 6550
- PDF Downloads: 319
- Cited By: 0