Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Water permeability in carbon nanotube arrays

Han Dian-Rong Zhu Xing-Feng Dai Ya-Fei Cheng Cheng-Ping Luo Cheng-Lin

Citation:

Water permeability in carbon nanotube arrays

Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The membrane composed of carbon nanotube arrays may be widely used in biological molecular devices, image display area and optoelectronic devices. In this paper, the water permeability of the (11, 11) carbon nanotube arrays is simulated by using the SPC/E water model and the molecular dynamics program LAMMPS at 300 K. It is found that the distance between carbon nanotubes has a significant impact on water density distribution and the electric dipole moment orientation. Regardless of the distance between the neighboring tubes, water molecules will get into the nanotubes and form a double-layer cylindrical ring structure inside the nanotubes. However, water molecules can fill into the interstitial space of the nanotube array only when the nearest distance between the neighbor the tubes is greater than 3.4 Å, or the interstitial cross area becomes greater than 57.91 Å2. As the interstitial space increases, the structure of water molecules in the interstitial space will evolve from disconnected single-file chains to boundary-shared close-packing-like columnar circles. Meanwhile, the radius of the water ring inside the nanotube will increase and its boundary becomes more sharp due to the attractions from those water molecules filled in the interstitial space. Relative to the tube axis, the distributions of the water molecular electric dipole moments in the interstitial space depend upon water structures. Under the condition of single-file chain, the distribution exhibits a bimodal characteristic, which is very similar to the distribution of water dipole moments inside the nanotube. Whereas, for the boundary-shared close-packing-like water columnar circle, the distribution of dipole moments shows a unimodal characteristic and the peak corresponds to the angle 90°. This indicates that the preferred orientation of the water dipoles points to the direction perpendicular to the tube axis. These conclusions are helpful in the understanding of the water transport properties in carbon nanotube arrays.
      Corresponding author: Luo Cheng-Lin, clluo@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203097), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 14KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
    [1]

    De Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755

    [4]

    Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872

    [5]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [6]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [7]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [8]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [9]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [10]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

    [11]

    Su J, Guo H 2011 ACS Nano 5 351

    [12]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275

    [13]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 64 116101]

    [14]

    Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103

    [15]

    Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043

    [16]

    Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171

    [17]

    Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559

    [18]

    Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608

    [19]

    Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175

    [20]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [21]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [22]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [25]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [26]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [27]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [28]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 63 086102]

    [29]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345

    [30]

    Nosé S 2002 Mol. Phys. 100 191

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1

    [33]

    Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

  • [1]

    De Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755

    [4]

    Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872

    [5]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [6]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [7]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [8]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [9]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [10]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

    [11]

    Su J, Guo H 2011 ACS Nano 5 351

    [12]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275

    [13]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 64 116101]

    [14]

    Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103

    [15]

    Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043

    [16]

    Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171

    [17]

    Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559

    [18]

    Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608

    [19]

    Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175

    [20]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [21]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [22]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [25]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [26]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [27]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [28]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 63 086102]

    [29]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345

    [30]

    Nosé S 2002 Mol. Phys. 100 191

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1

    [33]

    Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Huhe Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [3] Yang Tao, Qian Xian-Mei, Ma Hong-Liang, Liu Qiang, Zhu Wen-Yue, Zheng Jian-Jie, Chen Jie, Xu Qiu-Yi. CO2-broadened coefficients of water vapor molecule in 1.1 μm band. Acta Physica Sinica, 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [4] Chen Yu-Jiang, Jiang Wu-Gui, Lin Yan-Wen, Zheng Pan. A novel triple-walled carbon nanotube screwing oscillator: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [5] Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui. Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl). Acta Physica Sinica, 2019, 68(2): 026402. doi: 10.7498/aps.68.20182008
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] Zhang Zhong-Qiang, Li Chong, Liu Han-Lun, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Molecular dynamics study on permeability of water in graphene-carbon nanotube hybrid structure. Acta Physica Sinica, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [8] Pang Zong-Qiang, Zhang Yue, Rong Zhou, Jiang Bing, Liu Rui-Lan, Tang Chao. Adsorption and dissociation of water on oxygen pre-covered Cu (110) observed with scanning tunneling microscopy. Acta Physica Sinica, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [9] Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei. Flux controllable pumping of water molecules in a double-walled carbon nanotube. Acta Physica Sinica, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [10] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [11] Wang Zhi-Ping, Wu Ya-Min, Lu Chao, Zhang Xiu-Mei, He Yue-Juan. Irradiation of the water molecule by the femtosecond laser field. Acta Physica Sinica, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [12] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [13] Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin. Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature. Acta Physica Sinica, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [14] Chen Ming, Min Rui, Zhou Jun-Ming, Hu Hao, Lin Bo, Miao Ling, Jiang Jian-Jun. Molecular dynamic simulation of water molecules in carbon nanocapsule. Acta Physica Sinica, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [15] Wang Lei, Zhang Zhong-Qiang, Zhang Hong-Wu. Electrowetting in double-walled carbon nanotubes: molecular dynamics simulations. Acta Physica Sinica, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [16] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [18] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  6550
  • PDF Downloads:  319
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2015
  • Accepted Date:  06 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map