搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米胶囊中水分子的分子动力学研究

陈明 闵锐 周俊明 胡浩 林波 缪灵 江建军

引用本文:
Citation:

碳纳米胶囊中水分子的分子动力学研究

陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军

Molecular dynamic simulation of water molecules in carbon nanocapsule

Chen Ming, Min Rui, Zhou Jun-Ming, Hu Hao, Lin Bo, Miao Ling, Jiang Jian-Jun
PDF
导出引用
  • 采用分子动力学方法研究了不同温度下碳纳米胶囊中水分子及其氢键的聚集密度分布,讨论了水分子内部键角及其取向规律.计算结果表明,由于碳纳米胶囊的束缚作用,水分子主要聚集在与胶囊形状相似的三个薄层中,随着温度的升高,聚集密度峰均会展宽并向管壁移动.氢键的分布规律与水分子聚集密度类似并对其取向角分布有明显影响.与通常情况不同,在1000K高温时仍存在相当数量的氢键.在3100 K附近,碳纳米胶囊发生破裂,溢出少量水分子后自动愈合.
    The density distributions of water molecules and hydrogen bond in a specific nanocapsule at different temperatures were investigated by molecular dynamics simulation. We also analysed the intra-molecule angle and orientation of water molecules. The result indicates that, due to the confinement of carbon nanocapsule, water molecules are distributed mainly in three capsule-like layers, between which there are almost no water molecules. With temperature rising, the peaks of density distribution broaden to the nanotube wall. The hydrogen bonds are distributed similarly and affect the orientation of water molecules. There are a lot of hydrogen bonds at 1000 K, and the nanocapsule break with some molecules coming out at 3100 K.
    • 基金项目: 华中科技大学自主创新研究基金(批准号:C2009Q007)资助的课题.
    [1]

    Pimentel G C, McClellan A L 1960 The Hydrogen Bond (San Francisco, CA: Freeman) p347

    [2]

    Eisenberg D S, Kauzmann W 1969 The Structure and Properties of Water (New York: Oxford University Press) p296

    [3]

    Poole P H, Sciortino F, Grande T, Stanley H E, Angell C A 1994 Phys. Rev. Lett. 73 1632

    [4]

    Hoffmann M M, Conradi M S 1997 J. Am. Chem. Soc. 119 3811

    [5]

    Ikushima Y, Hatakeda K, Saito N 1998 J. Chem. Phys. 108 5855

    [6]

    Franks F 1972 Water: A Comprehensive Treatise (New York: Plenum)

    [7]

    Liu C S, Liang Y F, Zhu Z G, Li G X 2005 Chin. Phys. 14 785

    [8]

    Cohen A D, Reid C 1956 J. Chem. Phys. 25 790

    [9]

    Schneider W G, Bemstein H J, Pople J A 1958 J. Chem. Phys. 28 601

    [10]

    Jonas J, Defries T, Lamb W J 1978 J. Chem. Phys. 68 2988

    [11]

    Mizan T I, Savage P E, Ziff R M 1996 J. Phys. Chem. 100 403

    [12]

    Jorgensen W, Chandrasekhar J, Madura J, Impey R, Lemberg H, Stillinger F 1975 J. Chem. Phys. 62 1677

    [13]

    Toukan K, Rahman A 1985 Phys. Rev. B 31 2643193

    [14]

    Franck E U 1987 J. Chem. Thermodyn. 19 255

    [15]

    Kiran E, Debenedetti P G, Peters C J 2000 NATO Sci. Ser. E 366 569

    [16]

    Postorino P, Tromp R H, Ricci M A, Soper A K, Neilson G W 1993 Nature London 366 668

    [17]

    Chialvo A A, Cummings P T 1996 J. Phys. Chem. 100 1309

    [18]

    Kalinichev A G, Bass J D 1994 J. Chem. Phys. Lett. 231 301

    [19]

    Kalinichev A G, Bass J D 1997 J. Phys. Chem. A 101 9720

    [20]

    Kalinichev A G, Churakov S V 1999 Chem. Phys. Lett. 302 411

    [21]

    Benjamin I 1996 Chem. Rev. 96 1449

    [22]

    Gallo P, Rovere M, Spohr E 2000 J. Chem. Phys. 113 11324

    [23]

    Stanley H E 2005 Phys. Rev. E 72 051503

    [24]

    Martí J, Sala J, Guàrdia E, Gordillo M C 2009 Phys. Rev. E 79 031606

    [25]

    Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P 2004 Phys. Rev. Lett. 93 035503

    [26]

    Nagy G, Gordillo M C, Gurdia E, Marti J 2007 J. Phys. Chem. B 110 23987

    [27]

    Gordillo M C, Nagy G, Martí J 2005 J. Chem. Phys. 123 054707

    [28]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 58 1190]

    [29]

    Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 Intermolecular Forces (Holland:Reidel Publishing Company) p331

    [30]

    Gordillo M C, Martí J 2000 Chem. Phys. Lett. 329 341

    [31]

    Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017 (in Chinese) [周 健、陆小华、王延儒、时 钧 1999 物理化学学报 15 1017]

    [32]

    Martí J 1999 J. Chem. Phys. 110 6876

    [33]

    Petrenko V E, Antipova M L, Ved O V, Borovkov A V 2007 Struct. Chem. 18 505

    [34]

    Xie F, Zhu Y B, Zhang Z H, Zhang Z B, Zhang L 2008 Acta Phys. Sin. 57 5833 (in Chinese) [谢 芳、朱亚波、张兆慧、张志波、张 林 2008 57 5833]

    [35]

    Ouyang Y, Peng J C, Wang H, Yi S P 2008 Acta Phys. Sin. 57 0615 (in Chinese) [欧阳玉、彭景翠、王 慧、易双萍 2008 57 0615]

  • [1]

    Pimentel G C, McClellan A L 1960 The Hydrogen Bond (San Francisco, CA: Freeman) p347

    [2]

    Eisenberg D S, Kauzmann W 1969 The Structure and Properties of Water (New York: Oxford University Press) p296

    [3]

    Poole P H, Sciortino F, Grande T, Stanley H E, Angell C A 1994 Phys. Rev. Lett. 73 1632

    [4]

    Hoffmann M M, Conradi M S 1997 J. Am. Chem. Soc. 119 3811

    [5]

    Ikushima Y, Hatakeda K, Saito N 1998 J. Chem. Phys. 108 5855

    [6]

    Franks F 1972 Water: A Comprehensive Treatise (New York: Plenum)

    [7]

    Liu C S, Liang Y F, Zhu Z G, Li G X 2005 Chin. Phys. 14 785

    [8]

    Cohen A D, Reid C 1956 J. Chem. Phys. 25 790

    [9]

    Schneider W G, Bemstein H J, Pople J A 1958 J. Chem. Phys. 28 601

    [10]

    Jonas J, Defries T, Lamb W J 1978 J. Chem. Phys. 68 2988

    [11]

    Mizan T I, Savage P E, Ziff R M 1996 J. Phys. Chem. 100 403

    [12]

    Jorgensen W, Chandrasekhar J, Madura J, Impey R, Lemberg H, Stillinger F 1975 J. Chem. Phys. 62 1677

    [13]

    Toukan K, Rahman A 1985 Phys. Rev. B 31 2643193

    [14]

    Franck E U 1987 J. Chem. Thermodyn. 19 255

    [15]

    Kiran E, Debenedetti P G, Peters C J 2000 NATO Sci. Ser. E 366 569

    [16]

    Postorino P, Tromp R H, Ricci M A, Soper A K, Neilson G W 1993 Nature London 366 668

    [17]

    Chialvo A A, Cummings P T 1996 J. Phys. Chem. 100 1309

    [18]

    Kalinichev A G, Bass J D 1994 J. Chem. Phys. Lett. 231 301

    [19]

    Kalinichev A G, Bass J D 1997 J. Phys. Chem. A 101 9720

    [20]

    Kalinichev A G, Churakov S V 1999 Chem. Phys. Lett. 302 411

    [21]

    Benjamin I 1996 Chem. Rev. 96 1449

    [22]

    Gallo P, Rovere M, Spohr E 2000 J. Chem. Phys. 113 11324

    [23]

    Stanley H E 2005 Phys. Rev. E 72 051503

    [24]

    Martí J, Sala J, Guàrdia E, Gordillo M C 2009 Phys. Rev. E 79 031606

    [25]

    Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P 2004 Phys. Rev. Lett. 93 035503

    [26]

    Nagy G, Gordillo M C, Gurdia E, Marti J 2007 J. Phys. Chem. B 110 23987

    [27]

    Gordillo M C, Nagy G, Martí J 2005 J. Chem. Phys. 123 054707

    [28]

    Chen G D, Wang L D, An B, Yang M, Cao D C, Liu G Q 2009 Acta Phys. Sin. 58 1190 (in Chinese) [陈国栋、王六定、安 博、杨 敏、曹得财、刘光清 2009 58 1190]

    [29]

    Berendsen H J C, Postma J P M, van Gunsteren W F, Hermans J 1981 Intermolecular Forces (Holland:Reidel Publishing Company) p331

    [30]

    Gordillo M C, Martí J 2000 Chem. Phys. Lett. 329 341

    [31]

    Zhou J, Lu X H, Wang Y R, Shi J 1999 Acta Phys. Chim. Sin. 15 1017 (in Chinese) [周 健、陆小华、王延儒、时 钧 1999 物理化学学报 15 1017]

    [32]

    Martí J 1999 J. Chem. Phys. 110 6876

    [33]

    Petrenko V E, Antipova M L, Ved O V, Borovkov A V 2007 Struct. Chem. 18 505

    [34]

    Xie F, Zhu Y B, Zhang Z H, Zhang Z B, Zhang L 2008 Acta Phys. Sin. 57 5833 (in Chinese) [谢 芳、朱亚波、张兆慧、张志波、张 林 2008 57 5833]

    [35]

    Ouyang Y, Peng J C, Wang H, Yi S P 2008 Acta Phys. Sin. 57 0615 (in Chinese) [欧阳玉、彭景翠、王 慧、易双萍 2008 57 0615]

  • [1] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数.  , 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [2] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟.  , 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [3] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究.  , 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [4] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [5] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解.  , 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [6] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究.  , 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [7] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响.  , 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [8] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解.  , 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [9] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发.  , 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [10] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响.  , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [11] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [12] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究.  , 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [13] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解.  , 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [14] 李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态.  , 2005, 54(6): 2520-2523. doi: 10.7498/aps.54.2520
    [15] 陈子栋, 陈 刚. Hartmann势的Klein-Gordon方程束缚态解及递推关系.  , 2005, 54(6): 2524-2527. doi: 10.7498/aps.54.2524
    [16] 陈 刚. Rosen-Morse势阱中相对论粒子的束缚态.  , 2004, 53(3): 684-687. doi: 10.7498/aps.53.684
    [17] 陈 刚. 具有Wood-Saxon势的Dirac方程的束缚态.  , 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [18] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态.  , 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [19] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态.  , 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [20] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态.  , 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
计量
  • 文章访问数:  8480
  • PDF下载量:  854
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-26
  • 修回日期:  2009-10-26
  • 刊出日期:  2010-07-15

/

返回文章
返回
Baidu
map