搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管外壁高温蒸发的分子动力学模拟

王伟 张凯旺 孟利军 李中秋 左学云 钟建新

引用本文:
Citation:

多壁碳纳米管外壁高温蒸发的分子动力学模拟

王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新

Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature

Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin
PDF
导出引用
  • 采用经典分子动力学(MD)方法,使用EDIP(environment-dependent interatomic potential)势描述C纳米管内C原子之间相互作用,对多壁C纳米管由于Stone-Wales缺陷引起外层管高温剥落蒸发现象进行了计算模拟.研究结果表明,高温下多壁C纳米管外层管Stone-Wales缺陷处C原子剧烈振动导致C—C键断裂形成悬键,并逐渐向四周扩散导致外层管剥落蒸发.利用Lindemann指数作为判据,得出多壁C纳米管外层管出现剥落蒸发的温度为2290 K左右,与Huang Jianyu等实验中观测到多壁C纳米管外层管剥落蒸发现象产生的温度2000 ℃基本一致.
    We have used molecular dynamics (MD) simulation to investigate the evaporation of the surface wall of multi-wall carbon nanotubes (MWCNTs) at high temperature,using the environment dependent interatomic potential (EDIP) to describe the C—C interaction in carbon nanotube. The simulation results show that the Stone-Wales defect in the surface wall of a multi-wall carbon nanotube vibrates violently,which causes C—C bond breaking and evaporation of atoms along the circumferential directions of the nanotube. The formation of Stone-Wales defect is attributed to the atomic thermal motion or tensile strain. Using the Lindemann index as a criterion,we found that the surface wall of MWCNT evaporates around 2290 K. Our simulation results agree very well with the observation of the surface wall evaporation of the MWCNT at 2000 ℃.
    • 基金项目: 国家自然科学基金(批准号: 10774127,10974166)、教育部科技创新工程重大项目培育资金(批准号:708068)和湖南省教育厅重点项目(批准号:09A094)资助的课题.
    [1]

    [1]Zhang Y Y,Hu J P,Bernevig B A,Wang X R,Xie X C,Liu W M 2008 Phys. Rev. B 78 155413

    [2]

    [2]Zhang Y Y,Hu J,Bernevig B A,Wang X R,Xie X C,Liu W M 2009 Phys. Rev. Lett. 102 106401

    [3]

    [3]Zheng G P,Liang J Q,Liu W M 2009 Phys. Rev. B 79 14415

    [4]

    [4]He P B,Li Z D,Pan A L,Wan Q,Zhang Q L,Wang R X,Wang Y G,Liu W M,Zou B S 2008 Phys. Rev. B 78 54420

    [5]

    [5]Begtrup G E,Ray K G,Kessler B M,Yuzvinsky T D,Garcia H,Zettl A 2007 Phys. Rev. Lett. 99 155901

    [6]

    [6]Begtrup G E,Ray K G,Kessler B M,Yuzvinsky T D,Garcia H,Zettl A 2007 Phys. Status Solidi. B 244 3960

    [7]

    [7]Muramatsu H,Hayashi T,Ahm K Y,Terrones M,Endo M 2006 Chem. Phys. Lett. 432 240

    [8]

    [8]Andrews R,Jacques D,Qian D,Dickey E C 2001 Carbon 39 1681

    [9]

    [9]Huang W,Wang Y,Luo G,Wei F 2003 Carbon 41 2585

    [10]

    ]Huang J Y,Ding F,Yakobson B I 2008 Phys. Rev. Lett. 100 35503

    [11]

    ]Huang J Y,Ding F,Jiao K,Yakobson B I 2007 Small 3 1735

    [12]

    ]Huang J Y,Chen S,Jo S H,Wang Z,Han D X,Chen G,Dresselhaus M S,Ren Z F 2005 Phys. Rev. Lett. 94 236802

    [13]

    ]Huang J Y,Ding F,Yakobson B I 2008 Phys. Rev. B 78 155436

    [14]

    ]Zhang K W,Stocks G M,Zhong J X 2007 Nanotechnology 18 285703

    [15]

    ]Kowaki Y,Harada A,Shimojo F,Hoshino K 2007 J. Phys.:Condens. Mater. 19 436224

    [16]

    ]Tang C,Guo W,Chen C 2008 Phys. Rev. Lett. 100 175501

    [17]

    ]Ebbesen T W,Takada T 1995 Carbon 33 973

    [18]

    ]Stone A J,Wales D J 1986 Chem. Phys. Lett. 128 501

    [19]

    ]Zhang K W,Zhong J X 2008 Acta Phys. Sin. 57 3679 (in Chinese) [张凯旺、钟建新 2007 57 3679]

    [20]

    ]Xie F,Zhu Y B,Zhang Z H,Zhang L 2008 Acta Phys. Sin. 57 5833 (in Chinese) [谢芳、朱亚波、张兆慧、张林 2008 57 5833]

    [21]

    ]Meng L J,Zhang K W,Zhong J X 2007 Acta Phys. Sin. 56 1010 (in Chinese) [孟利军、张凯旺、钟建新 2007 56 1010]

    [22]

    ]Bao W X,Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 55 3552]

    [23]

    ]Zhang K W,Meng L J,Li J,Liu W L,Tang Y,Zhong J X 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李俊、刘文亮、唐翌、钟建新 2008 57 4347]

    [24]

    ]Li J,Zhang K W,Meng L J,Liu W L,Zhong J X 2008 Acta Phys. Sin. 57 0382 (in Chinese) [李俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 0382]

    [25]

    ]Vodenitcharova T,Zhang L C 2004 Phys. Rev. B 69 115410

    [26]

    ]Marks N A 2000 Phys. Rev. B 63 35401

    [27]

    ]Marks N 2002 J. Phys.:Condens. Mat. 14 2901

    [28]

    ]Marks N A,Cooper N C,McKenzie D R 2002 Phys. Rev. B 65 075411

    [29]

    ]Justo J F,Bazant M Z,Kaxiras E,Bulatov V V,Yip S 1998 Phys. Rev. B 58 2539

    [30]

    ]Lau D W M,McCulloch D G,Marks N A,Madsen N R,Rode A V 2007 Phys. Rev. B 75 233408

    [31]

    ]Powles R C,Marks N A,Lau D W M 2009 Phys. Rev. B 79 075430

    [32]

    ]Zhou Y,Karplus M,Ball K D,Berry R S 2002 J. Chem. Phys. 116 2323

    [33]

    ]Ding F,Bolton K,Rosen A 2005 Eur. Phys. J. D 34 275

    [34]

    ]Wang B L,Wang G H,Chen X S,Zhao J J 2003 Phys. Rev. B 67 193403

    [35]

    ]Ding F,Jiao K,Lin Y,Yakobson B I 2007 Nano Lett. 7 681

  • [1]

    [1]Zhang Y Y,Hu J P,Bernevig B A,Wang X R,Xie X C,Liu W M 2008 Phys. Rev. B 78 155413

    [2]

    [2]Zhang Y Y,Hu J,Bernevig B A,Wang X R,Xie X C,Liu W M 2009 Phys. Rev. Lett. 102 106401

    [3]

    [3]Zheng G P,Liang J Q,Liu W M 2009 Phys. Rev. B 79 14415

    [4]

    [4]He P B,Li Z D,Pan A L,Wan Q,Zhang Q L,Wang R X,Wang Y G,Liu W M,Zou B S 2008 Phys. Rev. B 78 54420

    [5]

    [5]Begtrup G E,Ray K G,Kessler B M,Yuzvinsky T D,Garcia H,Zettl A 2007 Phys. Rev. Lett. 99 155901

    [6]

    [6]Begtrup G E,Ray K G,Kessler B M,Yuzvinsky T D,Garcia H,Zettl A 2007 Phys. Status Solidi. B 244 3960

    [7]

    [7]Muramatsu H,Hayashi T,Ahm K Y,Terrones M,Endo M 2006 Chem. Phys. Lett. 432 240

    [8]

    [8]Andrews R,Jacques D,Qian D,Dickey E C 2001 Carbon 39 1681

    [9]

    [9]Huang W,Wang Y,Luo G,Wei F 2003 Carbon 41 2585

    [10]

    ]Huang J Y,Ding F,Yakobson B I 2008 Phys. Rev. Lett. 100 35503

    [11]

    ]Huang J Y,Ding F,Jiao K,Yakobson B I 2007 Small 3 1735

    [12]

    ]Huang J Y,Chen S,Jo S H,Wang Z,Han D X,Chen G,Dresselhaus M S,Ren Z F 2005 Phys. Rev. Lett. 94 236802

    [13]

    ]Huang J Y,Ding F,Yakobson B I 2008 Phys. Rev. B 78 155436

    [14]

    ]Zhang K W,Stocks G M,Zhong J X 2007 Nanotechnology 18 285703

    [15]

    ]Kowaki Y,Harada A,Shimojo F,Hoshino K 2007 J. Phys.:Condens. Mater. 19 436224

    [16]

    ]Tang C,Guo W,Chen C 2008 Phys. Rev. Lett. 100 175501

    [17]

    ]Ebbesen T W,Takada T 1995 Carbon 33 973

    [18]

    ]Stone A J,Wales D J 1986 Chem. Phys. Lett. 128 501

    [19]

    ]Zhang K W,Zhong J X 2008 Acta Phys. Sin. 57 3679 (in Chinese) [张凯旺、钟建新 2007 57 3679]

    [20]

    ]Xie F,Zhu Y B,Zhang Z H,Zhang L 2008 Acta Phys. Sin. 57 5833 (in Chinese) [谢芳、朱亚波、张兆慧、张林 2008 57 5833]

    [21]

    ]Meng L J,Zhang K W,Zhong J X 2007 Acta Phys. Sin. 56 1010 (in Chinese) [孟利军、张凯旺、钟建新 2007 56 1010]

    [22]

    ]Bao W X,Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星、朱长纯 2006 55 3552]

    [23]

    ]Zhang K W,Meng L J,Li J,Liu W L,Tang Y,Zhong J X 2008 Acta Phys. Sin. 57 4347 (in Chinese) [张凯旺、孟利军、李俊、刘文亮、唐翌、钟建新 2008 57 4347]

    [24]

    ]Li J,Zhang K W,Meng L J,Liu W L,Zhong J X 2008 Acta Phys. Sin. 57 0382 (in Chinese) [李俊、张凯旺、孟利军、刘文亮、钟建新 2008 57 0382]

    [25]

    ]Vodenitcharova T,Zhang L C 2004 Phys. Rev. B 69 115410

    [26]

    ]Marks N A 2000 Phys. Rev. B 63 35401

    [27]

    ]Marks N 2002 J. Phys.:Condens. Mat. 14 2901

    [28]

    ]Marks N A,Cooper N C,McKenzie D R 2002 Phys. Rev. B 65 075411

    [29]

    ]Justo J F,Bazant M Z,Kaxiras E,Bulatov V V,Yip S 1998 Phys. Rev. B 58 2539

    [30]

    ]Lau D W M,McCulloch D G,Marks N A,Madsen N R,Rode A V 2007 Phys. Rev. B 75 233408

    [31]

    ]Powles R C,Marks N A,Lau D W M 2009 Phys. Rev. B 79 075430

    [32]

    ]Zhou Y,Karplus M,Ball K D,Berry R S 2002 J. Chem. Phys. 116 2323

    [33]

    ]Ding F,Bolton K,Rosen A 2005 Eur. Phys. J. D 34 275

    [34]

    ]Wang B L,Wang G H,Chen X S,Zhao J J 2003 Phys. Rev. B 67 193403

    [35]

    ]Ding F,Jiao K,Lin Y,Yakobson B I 2007 Nano Lett. 7 681

  • [1] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响.  , 2021, (): . doi: 10.7498/aps.70.20211177
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟.  , 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟.  , 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟.  , 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究.  , 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性.  , 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [7] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究.  , 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [8] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究.  , 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [9] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟.  , 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [10] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟.  , 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] 张丽娟, 胡慧芳, 王志勇, 陈南庭, 谢能, 林冰冰. 含氮SW缺陷对单壁碳纳米管电子结构和光学性质的影响.  , 2011, 60(7): 077209. doi: 10.7498/aps.60.077209
    [12] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究.  , 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [13] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟.  , 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [14] 陈敏, 侯氢. 分子动力学方法研究钛中预存缺陷对氦融合的影响.  , 2010, 59(2): 1185-1189. doi: 10.7498/aps.59.1185
    [15] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟.  , 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟.  , 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究.  , 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟.  , 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟.  , 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  8282
  • PDF下载量:  1455
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-03
  • 修回日期:  2009-07-21
  • 刊出日期:  2010-02-05

/

返回文章
返回
Baidu
map