搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响

李灵栋 叶安娜 周胜林 张晓华 杨朝晖

引用本文:
Citation:

碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响

李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖

Confinement effect of carbon nanotubes on the chain mobility of conjugated polymer poly(9,9-dioctylfluorenyl-2,7-diyl)

Li Ling-Dong, Ye An-Na, Zhou Sheng-Lin, Zhang Xiao-Hua, Yang Zhao-Hui
PDF
HTML
导出引用
  • 在纳米受限空间中, 高分子往往会表现出与本体状态不同的性质, 如异常的链段运动特性及晶相间转变行为等, 这些性质对于研究和开发新型高分子材料具有重要的意义, 因此针对受限环境下高分子的物理化学特性研究也一直是高分子界关注的焦点. 本文通过化学气相沉积法制备垂直取向排列的多壁碳纳米管阵列, 借助溶剂润湿–收缩法获得规整的高密度阵列结构, 其取向排列的碳纳米管间隙形成了准一维的纳米受限空间, 尺寸在5—50 nm尺度下可调. 进一步将共轭高分子聚(9,9-二辛基芴-2,7-二基)(PFO)填充到碳管间隙的纳米空间中, 制备PFO与取向多壁碳纳米管阵列复合膜. 结果发现在碳纳米管形成的纳米受限空间中, PFO的链段热运动行为与本征态PFO薄膜相比受到了明显的抑制, 不同晶型间转变速度大大减缓, 提高了$\beta $构象的热稳定性, 同时取向排列的碳纳米管对PFO分子链取向排列分布具有明显的诱导作用, 有利于获得高性能的PFO晶体. 这种高密度取向排列的碳纳米管阵列结构未来可以用于制备优良发光性能及高稳定性的PFO光电器件.
    The conjugated polymer polyflourene has been well studied for its strong blue light emission ability and high quantum efficiency behavior. It has wide applications for light emitting diodes, sensors as well as photo-detectors. Therein the $ \beta $ conformation of PFO crystals is more attractive due to its longer conjugation length, higher carrier mobility and better luminous efficiency. Therefore it is great essential to control the formation and stability of $ \beta $ conformation of PFO crystals to develop new kind of photo-electronic devices. As is known, polymeric materials confined in a nanometer-sized space often exhibit unique properties compared with their bulk state, such as abnormal chain mobility, molecular assembly and phase transition behavior. These factors are of great significance to develop new kind of material and applications. Generally the confined condition includes quantum dot (zero-dimensional, 0D), nanowire or nanotube (1D), ultrathin film (2D) and nanoparticle (3D). In this paper, we design a unique 1D nanoconfined environment based on vertically aligned carbon nanotube (CNT) array structure. An ultra-high CNT density is achieved through a solvent-induced contraction process. The adjacent narrow carbon nanotube gap thus forms a quasi-1 confined nano-space with the tunable size ranging from 5 to 50 nm. Then we infiltrate the conjugated polymer poly(9,9-dioctylfluorene-2,7-diyl) (PFO) into those nano-gaps of carbon nanotube arrays through a solvent evaporation method to obtain the PFO infilled CNT array composite film. It is found that the chain mobility of PFO molecules in such a 1D nano-confined space of carbon nanotubes is significantly suppressed compared with the scenario of the spin-coated PFO film. The transition speed between different crystal forms of PFO declines greatly, which meanwhile improves the thermal stability of the $ \beta $ conformation of PFO crystal. Additionally, the aligned carbon nanotubes have great effects on the orientation and distribution of PFO chains. The PFO crystals are confirmed to grow preferentially along the longitudinal direction of CNT array, which is potential to grow PFO crystals with high quality and excellent performance. Thus, such a PFO/CNT array composite film can have great potential to prepare PFO photovoltaic devices with excellent luminescent properties and high stability in the future.
      通信作者: 杨朝晖, yangzhaohui@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21204059)、江苏省特聘教授计划(批准号: SR10800215, SR10800312)和江苏省自然科学基金(批准号: BK20181430)资助的课题.
      Corresponding author: Yang Zhao-Hui, yangzhaohui@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21204059), the Specially-Appointed Professor Plan in Jiangsu Province, China (Grant Nos. SR10800215, SR10800312), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181430).
    [1]

    Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587Google Scholar

    [2]

    Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545Google Scholar

    [3]

    Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314Google Scholar

    [4]

    Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326Google Scholar

    [5]

    Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800Google Scholar

    [6]

    Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696Google Scholar

    [7]

    Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731Google Scholar

    [8]

    Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391Google Scholar

    [9]

    Scherf U, List E J W 2002 Adv. Mater. 14 477Google Scholar

    [10]

    Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379Google Scholar

    [11]

    Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833Google Scholar

    [12]

    Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810Google Scholar

    [13]

    Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387Google Scholar

    [14]

    Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402Google Scholar

    [15]

    Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503Google Scholar

    [16]

    Cadby A J 2000 Phys. Rev. B 62 15604Google Scholar

    [17]

    Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574Google Scholar

    [18]

    Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882Google Scholar

    [19]

    Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247Google Scholar

    [20]

    Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315Google Scholar

    [21]

    Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993Google Scholar

    [22]

    Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299Google Scholar

    [23]

    Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71Google Scholar

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171Google Scholar

    [26]

    Liu C L, Chen H L 2018 Soft Matter 14 5461Google Scholar

    [27]

    Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196Google Scholar

    [28]

    Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617Google Scholar

    [29]

    Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472Google Scholar

    [30]

    Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801Google Scholar

    [31]

    Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244Google Scholar

    [32]

    Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194Google Scholar

    [33]

    Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535Google Scholar

    [34]

    Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638Google Scholar

    [35]

    O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379Google Scholar

    [36]

    O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42Google Scholar

    [37]

    Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997Google Scholar

    [38]

    Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024Google Scholar

    [39]

    Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153Google Scholar

    [40]

    Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007Google Scholar

    [41]

    Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885Google Scholar

    [42]

    Ajayan P M, Lijima S 1993 Nature 361 333Google Scholar

    [43]

    Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101

    [44]

    Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647Google Scholar

    [45]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321Google Scholar

    [46]

    Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820Google Scholar

    [47]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987Google Scholar

    [48]

    Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763Google Scholar

    [49]

    Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443Google Scholar

    [50]

    Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850Google Scholar

    [51]

    Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067Google Scholar

    [52]

    Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244Google Scholar

    [53]

    Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678Google Scholar

    [54]

    Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702Google Scholar

  • 图 1  PFO的化学结构式及三种不同的构象结构及其特征内扭角的示意图 (a) R=(CH2)7CH3; (b) $\alpha$构象; (c) $\gamma $构象; (d) $\beta $构象

    Fig. 1.  Chemical structure of PFO and Schematic illustration of three distinct conformational structures and their characteristic intrachain torsional angles: (a) R=(CH2)7CH3; (b) $\alpha$-phase; (c) $\gamma $-phase; (d) $\beta $-phase.

    图 2  (a) PFO/S-ACNTs样品制备流程图; (b) ACNTs阵列收缩前后的对照图; (c) ACNTs的SEM和TEM图 (插图); (d), (e), (f) 相同放大倍数ACNTs、S-ACNTs和PFO/S-ACNTs的SEM图

    Fig. 2.  (a) Schematic preparation of PFO/S-ACNTs; (b) photographs of ACNTs before and after the densification; (c) SEM and TEM (insets) images of as-grown ACNTs; (d), (e), (f) SEM cross-section images of ACNTs、S-ACNTs and PFO/S-ACNTs in the same magnification.

    图 3  (a) PFO薄膜的吸收光谱 (蓝色) 与荧光光谱 (红色); (b), (c), (d) 分别对应PFO薄膜、PFO/S-ACNTs和PFO&RCNTs薄膜随退火温度变化的荧光光谱图 (激发波长为380 nm); (e) 三种PFO样品0—0发射峰峰位随退火温度的变化

    Fig. 3.  (a) UV-vis absorption spectra (blue) and PL spectra (red) of PFO film; PL spectra of PFO film, PFO/S-ACNTs and PFO&RCNTs film with different annealing conditions corresponding to (b), (c) and (d), respectively (the excitation wavelength is 380 nm); (e) annealing temperature dependence of the 0—0 emission peak of three PFO based samples.

    图 4  三种薄膜样品在不同温度下退火后的XRD衍射图 (所有样品在氮气氛围下退火1 h) (a) PFO滴膜样品; (b) PFO/S-ACNTs样品; (c) PFO & RCNTs

    Fig. 4.  XRD diffraction pattern of (a) PFO drop film, (b) PFO/S-ACNTs, and (c) PFO & RCNTs at different annealing temperature (all samples are annealed in nitrogen atmosphere for 1 h).

    Baidu
  • [1]

    Cook J H, Santos J, Li H, Al-Attar H A, Bryce M R, Monkman A P 2014 J. Mater. Chem. C 2 5587Google Scholar

    [2]

    Schelkle K M, Bender M, Jeltsch K, Buckup T, Mullen K, Hamburger M, Bunz U H 2015 Angew. Chem. Int. Ed. 54 14545Google Scholar

    [3]

    Luo J, Zhou Y, Niu Z Q, Zhou Q F, Ma Y G, Pei J 2007 J. Am. Chem. Soc. 129 11314Google Scholar

    [4]

    Zhong C, Duan C, Huang F, Wu H, Cao Y 2011 Chem. Mater. 23 326Google Scholar

    [5]

    Cingil H E, Storm I M, Yorulmaz Y, Te B D W, De V R, Cohen S M A, Sprakel J 2015 J. Am. Chem. Soc. 137 9800Google Scholar

    [6]

    Lv F T, Qiu T, Liu L B, Ying J M, Wang S 2016 Small 12 696Google Scholar

    [7]

    Inganas O, Zhang F, Andersson M R 2009 Acc. Chem. Res. 42 1731Google Scholar

    [8]

    Wu H, Ying L, Yang W, Cao Y 2009 Chem. Soc. Rev. 38 3391Google Scholar

    [9]

    Scherf U, List E J W 2002 Adv. Mater. 14 477Google Scholar

    [10]

    Chen S H, Su A C, Su C H, Chen S A 2005 Macromolecules 38 379Google Scholar

    [11]

    Chen S H, Chou H L, Su A C, Chen S A 2004 Macromolecules 37 6833Google Scholar

    [12]

    Grell M, Bradley D D C, Ungar G, Hill J, Whitehead K S 1999 Macromolecules 32 5810Google Scholar

    [13]

    Lee C C, Lai S Y, Su W B, Chen H L, Chung C L, Chen J H 2013 J. Phys. Chem. C 117 20387Google Scholar

    [14]

    Chunwaschirasiri W, Tanto B, Huber D L, Winokur M J 2005 Phys. Rev. Lett. 94 107402Google Scholar

    [15]

    Arif M, Volz C, Guha S 2006 Phys. Rev. Lett. 96 025503Google Scholar

    [16]

    Cadby A J 2000 Phys. Rev. B 62 15604Google Scholar

    [17]

    Lu H H, Liu C Y, Chang C H, Chen S A 2007 Adv. Mater. 19 2574Google Scholar

    [18]

    Peet J, Brocker E, Xu Y, Bazan G C 2008 Adv. Mater. 20 1882Google Scholar

    [19]

    Asada K, Kobayasi T, Naito H 2006 Japanese Journal of Applied Physics Part 2-Letters and Express Letters 45 L247Google Scholar

    [20]

    Zhang Q, Chi L, Hai G, Fang Y, Li X, Xia R, Huang W, Gu E 2017 Molecules 22 315Google Scholar

    [21]

    Huang L, Huang X, Sun G, Gu C, Lu D, Ma Y 2012 J. Phys. Chem. C 116 7993Google Scholar

    [22]

    Li T, Liu B, Zhang H, Ren J, Bai Z, Li X, Ma T, Lu D 2016 Polymer 103 299Google Scholar

    [23]

    Li T, Huang L, Bai Z, Li X, Liu B, Lu D 2016 Polymer 88 71Google Scholar

    [24]

    O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar

    [25]

    Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn R B, Gösele U, San Roman J, Mijangos C, Steinhart M 2010 J. Mater. Chem. 20 3171Google Scholar

    [26]

    Liu C L, Chen H L 2018 Soft Matter 14 5461Google Scholar

    [27]

    Li M, Wu H, Huang Y, Su Z 2012 Macromolecules 45 5196Google Scholar

    [28]

    Shin K, Woo E, Jeong Y G, Kim C, Huh J, Kim K W 2007 Macromolecules 40 6617Google Scholar

    [29]

    Garcia G M C, Linares A, Hernandez J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472Google Scholar

    [30]

    Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U, Hempel E, Thurn A T 2006 Phys. Rev. Lett. 97 027801Google Scholar

    [31]

    Hui W, Wei W, Huixian Yang A, Su Z 2007 Macromolecules 40 4244Google Scholar

    [32]

    Wu H, Wang W, Huang Y, Su Z 2009 Macromol Rapid Commun. 30 194Google Scholar

    [33]

    Wu Y, Gu Q, Ding G, Tong F, Hu Z, Jonas A M 2013 ACS Macro Lett. 2 535Google Scholar

    [34]

    Ding G, Wu Y, Weng Y, Zhang W, Hu Z 2013 Macromolecules 46 8638Google Scholar

    [35]

    O'Brien G A, Quinn A J, Tanner D A, Redmond G 2006 Adv. Mater. 18 2379Google Scholar

    [36]

    O'Carroll D, Iacopino D, O'Riordan A, Lovera P, O'Connor É, O'Brien G A, Redmond G 2008 Adv. Mater. 20 42Google Scholar

    [37]

    Steinhart M, Wendorff J H, Greiner A, Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U 2002 Science 296 1997Google Scholar

    [38]

    Ding G, Li C, Li X, Wu Y, Liu J, Li Y, Hu Z, Li Y 2015 Nanoscale 7 11024Google Scholar

    [39]

    Wei S, Zhang Y, Liu J, Li X, Wu Y, Wei H, Weng Y, Gao X, Li Y, Wang S D, Hu Z 2015 Adv. Mater. Interfaces 2 1500153Google Scholar

    [40]

    Zhang P, Huang H, He T, Hu Z 2012 ACS Macro Lett. 1 1007Google Scholar

    [41]

    Li X H, Shen X Z, Gao X, Weng Y Y 2017 RSC Adv. 7 55885Google Scholar

    [42]

    Ajayan P M, Lijima S 1993 Nature 361 333Google Scholar

    [43]

    Ugarte D, Stöckli T, Bonard J M, Châtelain A, Heer W A D 1998 Appl. Phys. A 67 101

    [44]

    Nakamura A, Koyama T, Miyata Y, Shinohara H 2016 J. Phys. Chem. C 120 4647Google Scholar

    [45]

    Liu Z, Liao G, Li S, Pan Y, Wang X, Weng Y, Zhang X, Yang Z 2013 J. Mater. Chem. A 1 13321Google Scholar

    [46]

    Bai Z, Liu Y, Li T, Li X, Liu B, Liu B, Lu D 2016 J. Phys. Chem. C 120 27820Google Scholar

    [47]

    Futaba D N, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S 2006 Nat. Mater. 5 987Google Scholar

    [48]

    Zhou S, Sheng J, Yang Z, Zhang X 2018 J. Mater. Chem. A 6 8763Google Scholar

    [49]

    Li X, Bai Z, Liu B, Li T, Lu D 2017 J. Phys. Chem. C 121 14443Google Scholar

    [50]

    Jen T H, Wang K K , Chen S A 2012 Polymer 53 5850Google Scholar

    [51]

    Chen S H, Su A C, Chen S A 2005 J. Phys. Chem. B 109 10067Google Scholar

    [52]

    Torkkeli M, Galbrecht F, Scherf U, Knaapila M 2015 Macromolecules 48 5244Google Scholar

    [53]

    Sheng J, Zhou S, Yang Z, Zhang X 2018 Langmuir 34 3678Google Scholar

    [54]

    Wang M, Li L, Zhou S, Tang R, Yang Z, Zhang X 2018 Langmuir 34 10702Google Scholar

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布.  , 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [3] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究.  , 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [4] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟.  , 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [5] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟.  , 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [6] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究.  , 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [7] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响.  , 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [8] 麻华丽, 霍海波, 曾凡光, 向飞, 王淦平. 铜基碳纳米管薄膜的制备及其强流脉冲发射特性研究.  , 2013, 62(15): 158801. doi: 10.7498/aps.62.158801
    [9] 仝焕平, 章林溪. 受限于圆柱体内半刚性高分子链的螺旋结构转变.  , 2012, 61(5): 058701. doi: 10.7498/aps.61.058701
    [10] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [11] 朱德喜, 甄红宇, 叶辉, 刘旭. 9,9-二辛基聚芴-苯并噻二唑交替共聚物的绿光偏振电致发光.  , 2009, 58(3): 2067-2071. doi: 10.7498/aps.58.2067
    [12] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟.  , 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [13] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] 张国英, 张 辉, 魏 丹, 何君琦. 碳纳米管增强铝基复合材料电子理论研究.  , 2007, 56(3): 1581-1584. doi: 10.7498/aps.56.1581
    [15] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟.  , 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [16] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [17] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟.  , 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [18] 陈传盛, 陈小华, 李学谦, 张 刚, 易国军, 张 华, 胡 静. 碳纳米管增强镍磷基复合镀层研究.  , 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
    [19] 宋教花, 张耿民, 张兆祥, 孙明岩, 薛增泉. 多壁碳纳米管阵列场发射研究.  , 2004, 53(12): 4392-4397. doi: 10.7498/aps.53.4392
    [20] 朱亚波, 王万录, 廖克俊. 对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究.  , 2002, 51(10): 2335-2339. doi: 10.7498/aps.51.2335
计量
  • 文章访问数:  7396
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2018-11-29
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map