-
A water pumping system model has been designed based on the double-walled carbon nanotube. In this system, the inner tube is fixed as the water channel, while the exterior one can move, similar to the piston motion along the axial direction, to create a pumping force. Molecular dynamics simulations confirm that both the water flux and the water dipole orientation are sensitive to the velocity of motions of the outer tube so that a controllable unidirectional water flow can be achieved in this system by varying the velocity. Its pumping ability comes mainly from the carbon-water van der Waals driving forces of the exterior tube. The piston motion of the outer tube changes the position of the vdW balance point, which not only leads to the increase of vdW force on the water molecules already residing in the inner tube, but also enlarges their accelerated distance. Meanwhile, the orientation of water molecules inside the inner tube is strongly coupled to the water flux, the probability of +dipole states attains unity at v = 0.05 Å/ps, where the water flux reaches its maximum value (2.02 ns-1). Compared to the pump which is controlled by uniform electric field, the transmission efficiency of our mechanical pump is higher. This design may open a new way for water pumping in the field of nanodevices.
-
Keywords:
- carbon nanotube /
- molecular dynamics simulation /
- water pumping system /
- transport property
[1] de Groot B L, Grubmller H 2001 Science 294 2353
[2] Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609
[3] Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755
[4] Zhu F, Schulten K 2003 Biophys. J. 85 236
[5] Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175
[6] Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 61 096101]
[7] Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201
[8] Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373
[9] Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893
[10] Duan W H, Wang Q 2010 ACS Nano 4 2338
[11] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709
[12] Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205
[13] Su J Y, Guo H X 2011 ACS Nano 5 351
[14] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275
[15] Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117
[16] Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378
[17] Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218
[18] Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38
[19] Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674
[20] Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615
[21] Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60
[22] Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 53 3462]
[23] Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 58 4536]
[24] Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102
[25] Cumings J, Zettl A 2000 Science 289 602
[26] Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504
[27] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781
[28] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926
[29] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577
[30] Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188
[31] Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166
[32] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687
[33] Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348
[34] Heymann J B, Engel A 1999 News. Physiol. Sci 14 187
[35] Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583
[36] Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898
[37] Joseph S, Aluru N R 2008 Nano Lett. 8 452
[38] Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502
-
[1] de Groot B L, Grubmller H 2001 Science 294 2353
[2] Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609
[3] Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755
[4] Zhu F, Schulten K 2003 Biophys. J. 85 236
[5] Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175
[6] Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 61 096101]
[7] Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201
[8] Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373
[9] Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893
[10] Duan W H, Wang Q 2010 ACS Nano 4 2338
[11] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709
[12] Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205
[13] Su J Y, Guo H X 2011 ACS Nano 5 351
[14] Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275
[15] Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117
[16] Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378
[17] Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218
[18] Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38
[19] Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674
[20] Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615
[21] Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60
[22] Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 53 3462]
[23] Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 58 4536]
[24] Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102
[25] Cumings J, Zettl A 2000 Science 289 602
[26] Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504
[27] Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781
[28] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926
[29] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577
[30] Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188
[31] Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166
[32] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687
[33] Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348
[34] Heymann J B, Engel A 1999 News. Physiol. Sci 14 187
[35] Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583
[36] Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898
[37] Joseph S, Aluru N R 2008 Nano Lett. 8 452
[38] Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502
Catalog
Metrics
- Abstract views: 6496
- PDF Downloads: 191
- Cited By: 0