Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in Ge and GeSn light emission on Si

He Chao Zhang Xu Liu Zhi Cheng Bu-Wen

Citation:

Recent progress in Ge and GeSn light emission on Si

He Chao, Zhang Xu, Liu Zhi, Cheng Bu-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Si-based optical interconnection is expected to solve the problems caused by electric interconnection with increasing the density of integrated circuits, due to its merits of high speed, high bandwidth, and low consumption. So far, all of the key components except light source of Si-based optical interconnection have been demonstrated. Therefore, the light source has been considered as one of the most important components. Ge and GeSn based on Si have emerged as very promising candidates because of their high compatibility with Si CMOS processing, and the pseudo direct-bandgap characteristic. The energy difference between the direct and indirect bandgap of Ge is only 136 meV at room temperature. Under tensile strain or incorporation with Sn, the energy difference becomes smaller, and even less than zero, which means that Ge or GeSn changes into direct bandgap material. What is more, using large n-type doping to increase the fraction of electrons in valley, we can further increase the luminous efficiency of Ge or GeSn. In this paper, we briefly overview the recent progress that has been reported in the study of Ge and GeSn light emitters for silicon photonics, including theoretical models for calculating the optical gain and loss, several common methods of introducing tensile strain into Ge, methods of increasing the n-type doping density, and the method of fabricating luminescent devices of Ge and GeSn. Finally, we discuss the challenges facing us and the development prospects, in order to have a further understanding of Ge and GeSn light sources. Several breakthroughs have been made in past years, especially in the realizing of lasing from GeSn by optically pumping and Ge by optically and electrically pumping, which makes it possible to fabricate a practical laser used in silicon photonics and CMOS technology.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB632103) and the National Natural Science Foundation of China (Grant Nos. 61176013, 61036003).
    [1]

    Moore G E 1998 Proc. IEEE 86 82

    [2]

    Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1

    [3]

    Paniccia M 2010 Nature Photon. 4 498

    [4]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [5]

    Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292

    [6]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [7]

    Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198

    [8]

    Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203

    [9]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [10]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [11]

    Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272

    [12]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [13]

    El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710

    [14]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105

    [18]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309

    [19]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [20]

    Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915

    [21]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [22]

    Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358

    [23]

    Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893

    [24]

    Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [25]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [26]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911

    [27]

    El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107

    [28]

    Pankove J I, Aigrain P 1962 Phys. Rev. 126 956

    [29]

    Haas C 1962 Phys. Rev. 125 1965

    [30]

    Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822

    [31]

    Newman R, Tyler W W 1957 Phys. Rev. 105 885

    [32]

    Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402

    [33]

    Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881

    [34]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [35]

    Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462

    [36]

    Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103

    [37]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

    [38]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [39]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [40]

    Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [41]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [42]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [43]

    Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162

    [44]

    Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994

    [45]

    D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207

    [46]

    Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203

    [47]

    Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912

    [48]

    Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910

    [49]

    Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109

    [50]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [51]

    Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751

    [52]

    Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187

    [53]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88

  • [1]

    Moore G E 1998 Proc. IEEE 86 82

    [2]

    Smit M, van der Tol J, Hill M 2012 Laser Photon Rev. 6 1

    [3]

    Paniccia M 2010 Nature Photon. 4 498

    [4]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [5]

    Rong H, Liu A, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M 2005 Nature 433 292

    [6]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [7]

    Fujii M, Yoshida M, Kanzawa Y, Hayashi S, Yamamoto K 1997 Appl. Phys. Lett. 71 1198

    [8]

    Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E 2006 Opt. Express 14 9203

    [9]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [10]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [11]

    Liu J, Sun X, Pan D, Wang X, Kimerling L C, Koch T L, Michel J 2007 Opt. Express 15 11272

    [12]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Ze Y, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [13]

    El Kurdi M, Fishman G, Sauvage S b, Boucaud P 2010 J. Appl. Phys. 107 013710

    [14]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Dimoulas A 2012 J. Phys.: Condens. Matter 24 1614

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Physica B: Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z 2014 J. Appl. Phys. 116 113105

    [18]

    Liu J, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J, Kimerling L C 2004 Phys. Rev. B 70 155309

    [19]

    Liu Z, Cheng B W, Li Y M, Li C B, Xue C L, Wang Q M 2013 Chin. Phys. B 22 116804

    [20]

    Fang Y Y, Tolle J, Roucka R, Chizmeshya A V G, Kouvetakis J, D'Costa V R, Menéndez J 2007 Appl. Phys. Lett. 90 061915

    [21]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [22]

    Lim P H, Park S, Ishikawa Y, Wada K 2009 Opt. Express 17 16358

    [23]

    Sanchez-Perez J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 PNAS 108 18893

    [24]

    Jain J R, Hryciw A, Baer T M, Miller D A, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [25]

    Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M, Virgilio M, Ghrib A, El Kurdi M, Boucaud P, Tillack B, Schroeder T 2014 Opt. Express 22 399

    [26]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Appl. Phys. Lett. 95 011911

    [27]

    El Kurdi M, Kociniewski T, Ngo T P, Boulmer J, Débarre D, Boucaud P, Damlencourt J F, Kermarrec O, Bensahel D 2009 Appl. Phys. Lett. 94 191107

    [28]

    Pankove J I, Aigrain P 1962 Phys. Rev. 126 956

    [29]

    Haas C 1962 Phys. Rev. 125 1965

    [30]

    Spitzer W G, Trumbore F A, Logan R A 1961 J. Appl. Phys. 32 1822

    [31]

    Newman R, Tyler W W 1957 Phys. Rev. 105 885

    [32]

    Carroll L, Friedli P, Neuenschwander S, Sigg H, Cecchi S, Isa F, Chrastina D, Isella G, Fedoryshyn Y, Faist J 2012 Phys. Rev. Lett. 109 057402

    [33]

    Sun X C, Liu J F, Kimerling L C, Michel J 2008 Sige, Ge, and Related Compounds 3 : Materials, Processing, and Devices 16 881

    [34]

    Brotzmann S, Bracht H 2008 J. Appl. Phys. 103 033508

    [35]

    Camacho-Aguilera R E, Cai Y, Bessette J T, Kimerling L C, Michel J 2012 Opt. Mat. Express 2 1462

    [36]

    Xu C, Senaratne C L, Kouvetakis J, Menéndez J 2014 Appl. Phys. Lett. 105 232103

    [37]

    Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D, Wang Q M 2009 Appl. Phys. Lett. 95 092102

    [38]

    Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y 2009 Opt. Express 17 10019

    [39]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [40]

    Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [41]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [42]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [43]

    Boucaud P, Kurdi M E, Sauvage S, de Kersauson M, Ghrib A, Checoury X 2013 Nat. Photon. 7 162

    [44]

    Jenkins D W, Dow J D 1987 Phys. Rev. B 36 7994

    [45]

    D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M, Zollner S, Kouvetakis J, Menéndez J 2006 Phys. Rev. B 73 125207

    [46]

    Yin W J, Gong X G, Wei S H 2008 Phys. Rev. B: Condens. Matter 78 161203

    [47]

    Mathews J, Beeler R T, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J 2010 Appl. Phys. Lett. 97 221912

    [48]

    Grzybowski G, Jiang L, Mathews J, Roucka R, Xu C, Beeler R T, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 99 171910

    [49]

    Roucka R, Mathews J, Beeler R T, Tolle J, Kouvetakis J, Menéndez J 2011 Appl. Phys. Lett. 98 061109

    [50]

    Chen R, Lin H, Huo Y, Hitzman C, Kamins T I, Harris J S 2011 Appl. Phys. Lett. 99 181125

    [51]

    Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J 2011 IEEE Photon. Tech. L. 23 1751

    [52]

    Oehme M, Kostecki K, Arguirov T, Mussler G, Kaiheng Y, Gollhofer M, Schmid M, Kaschel M, Korner R A, Kittler M, Buca D, Kasper E, Schulze J 2014 IEEE Photon. Tech. L. 26 187

    [53]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nature Photon. 9 88

  • [1] Tao Cong, Wang Jing-Min, Niu Mei-Ling, Zhu Lin, Peng Qi-Ming, Wang Jian-Pu. Magnetic field effects in non-magnetic luminescent materials: from organic semiconductors to halide perovskites. Acta Physica Sinica, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [2] Yang Wen, Song Jian-Jun, Ren Yuan, Zhang He-Ming. Band structure model of modified Ge for optical device application. Acta Physica Sinica, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [3] Huang Shi-Hao, Xie Wen-Ming, Wang Han-Cong, Lin Guang-Yang, Wang Jia-Qi, Huang Wei, Li Cheng. Lattice scattering in n-type Ge-on-Si based on the unique dual-valley transitions. Acta Physica Sinica, 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [4] Shi Wen-Jun, Yi Ying-Yan, Li Min. Pressure dependence of refractive index of Ge near the absorption edge. Acta Physica Sinica, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [5] An Xia, Huang Ru, Li Zhi-Qiang, Yun Quan-Xin, Lin Meng, Guo Yue, Liu Peng-Qiang, Li Ming, Zhang Xing. Research progress of high mobility germanium based metal oxide semiconductor devices. Acta Physica Sinica, 2015, 64(20): 208501. doi: 10.7498/aps.64.208501
    [6] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [7] Lin Zhen-Xu, Lin Ze-Wen, Zhang Yi, Song Chao, Guo Yan-Qing, Wang Xiang, Huang Xin-Tang, Huang Rui. Electroluminescence from Si nanostructure-based silicon nitride light-emitting devices. Acta Physica Sinica, 2014, 63(3): 037801. doi: 10.7498/aps.63.037801
    [8] Liu Zhi, Li Ya-Ming, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. Effect of doping on the photoluminescence of multilayer Ge quantum dots deposited on Si(001) substrate. Acta Physica Sinica, 2013, 62(7): 076108. doi: 10.7498/aps.62.076108
    [9] Su Shao-Jian, Cheng Bu-Wen, Xue Chun-Lai, Zhang Dong-Liang, Zhang Guang-Ze, Wang Qi-Ming. Lattice constant deviation from Vegard's law in GeSn alloys. Acta Physica Sinica, 2012, 61(17): 176104. doi: 10.7498/aps.61.176104
    [10] Huang Shi-Hao, Li Cheng, Chen Cheng-Zhao, Zheng Yuan-Yu, Lai Hong-Kai, Chen Song-Yan. The optical property of tensile-strained n-type doped Ge. Acta Physica Sinica, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [11] Wu Zheng, Wang Chen, Yan Guang-Ming, Liu Guan-Zhou, Li Cheng, Huang Wei, Lai Hong-Kai, Chen Song-Yan. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact. Acta Physica Sinica, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [12] Chen Cheng-Zhao, Zheng Yuan-Yu, Huang Shi-Hao, Li Cheng, Lai Hong-Kai, Chen Song-Yan. Epitaxial growth of thick Ge layers with low dislocation density on silicon substrate by UHV/CVD. Acta Physica Sinica, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [13] Su Shao-Jian, Wang Wei, Zhang Guang-Ze, Hu Wei-Xuan, Bai An-Qi, Xue Chun-Lai, Zuo Yu-Hua, Cheng Bu-Wen, Wang Qi-Ming. Epitaxial growth of Ge0.975Sn0.025alloy films on Si(001) substrates by molecular beam epitaxy. Acta Physica Sinica, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [14] Hu Fang, Zhang Han-Jie, Lü Bin, Tao Yong-Sheng, Li Hai-Yang, Bao Shi-Ning, He Pi-Mo, X. S. Wang. Growth and characteristics of Ge on Ru(0001). Acta Physica Sinica, 2005, 54(3): 1330-1333. doi: 10.7498/aps.54.1330
    [15] TU XIU-WEN, GAI ZHENG. ATOMIC STRUCTURE OF THE Ge(112)-(4×1)-In RECONSTRUCTION. Acta Physica Sinica, 2001, 50(12): 2439-2445. doi: 10.7498/aps.50.2439
    [16] QIAO HAO, ZI JIAN, XU ZHI-ZHONG, ZHANG KAI-MING. BAND STRUCTURE OF Si/Ge STRAINED LAYER SUPERLATTICE. Acta Physica Sinica, 1993, 42(8): 1317-1323. doi: 10.7498/aps.42.1317
    [17] QIAO HAO, XU ZHI-ZHONG, ZHANG KAI-MING. DEEP LEVELS IN STRAINED Si AND Ge. Acta Physica Sinica, 1993, 42(11): 1830-1835. doi: 10.7498/aps.42.1830
    [18] ZI JIAN, ZHANG KAI-MING. GEOMETRICAL CONFIGURATIONS OF (Si)n/(Ge)n SUPERLATTICES. Acta Physica Sinica, 1990, 39(10): 1640-1646. doi: 10.7498/aps.39.1640
    [19] CHEN KE-MING, ZHOU GUO-LIANG, SHENG CHI, JIANG WEI-DONG, ZHANG XIANG-JIU. THE GROWTH CHARACTERISTICS AND SURFACE RECONS-TRUCTION OF Ge/Si (111) AND Si/Ge(111). Acta Physica Sinica, 1990, 39(4): 599-606. doi: 10.7498/aps.39.599
    [20] ZHANG KAI-MING, YE LING. CHLORINE CHEMISORPTION ON THE SILICON AND GERMANIUM SURFACE. Acta Physica Sinica, 1980, 29(12): 1596-1603. doi: 10.7498/aps.29.1596
Metrics
  • Abstract views:  6034
  • PDF Downloads:  478
  • Cited By: 0
Publishing process
  • Received Date:  19 August 2015
  • Accepted Date:  20 September 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map