Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lattice scattering in n-type Ge-on-Si based on the unique dual-valley transitions

Huang Shi-Hao Xie Wen-Ming Wang Han-Cong Lin Guang-Yang Wang Jia-Qi Huang Wei Li Cheng

Citation:

Lattice scattering in n-type Ge-on-Si based on the unique dual-valley transitions

Huang Shi-Hao, Xie Wen-Ming, Wang Han-Cong, Lin Guang-Yang, Wang Jia-Qi, Huang Wei, Li Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Silicon-based light emitting materials and devices with high efficiency are inarguably the most challenging elements in silicon (Si) photonics. Band-gap engineering approaches, including tensile strain and n-type doping, utilized for tuning germanium (Ge) to an optical gain medium have the potential for realizing monolithic optoelectronic integrated circuit. While previous experimental research has greatly contributed to optical gain and lasing of Ge direct-gap, many efforts were made to reduce lasing threshold, including the understanding of high efficiency luminescence mechanism with tensile strain and n-type doping in Ge. This paper focuses on the theoretical analysis of lattice scattering in n-type Ge-on-Si material based on its unique dual-valley transition for further improving the efficiency luminescence of Ge direct-gap laser. Lattice scattering of carriers, including inter-valley and intra-valley scattering, influence the electron distribution between the direct valley and indirect L valleys in the conduction of n-type Ge-on-Si material. This behavior can be described by theoretical model of quantum mechanics such as perturbation theory. In this paper, the lattice scatterings of intra-valley scattering in valley and L valleys, and of inter-valley scattering between the direct valley and L valleys in the n-type Ge-on-Si materials are exhibited based on its unique dual-valley transition by perturbation theory. The calculated average scattering times for phonon scattering in the cases of valley and L valleys, and for inter-valley optical phonon scattering between valley and L valleys are in agreement with experimental results, which are of significance for understanding the lattice scattering mechanism in the n-type Ge-on-Si material. The numerical calculations show that the disadvantaged inter-valley scattering of electrons from the direct valley to indirect L valleys reduces the electrons dwelling in the direct valley slightly with n-type doping concentration, while the strong inter-valley scattering from the indirect L valleys to indirect valleys increases electrons dwelling in the direct valley with n-type doping concentration. The competition between the two factors leads to an increasing electrons dwelling in the direct valley with n-type doping in a range from 1017 cm-3 to 1019 cm-3. That the electrons in the indirect L valleys are transited into the direct valley by absorbing inter-valley optical phonon modes is one of the effective ways to enhance the efficiency luminescence of Ge direct-gap laser. The results indicate that a low-threshold Ge-on-Si laser can be further improved by engineering the inter-valley scattering for enhancing the electrons dwelling in the valley.
      Corresponding author: Huang Shi-Hao, haoshihuang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61604041), the Natural Science Foundation of Fujian Province of China (Grant No. 2016J05147), Training Program for Outstanding Youth Scientific Research Talents of the Education Department of Fujian Province in 2017, and the Science Research Foundation of Fujian University of Technology, China (Grant No. GY-Z14073).
    [1]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [2]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [3]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [4]

    Kaschel M, Schmid M, Gollhofer M, Werner J, Oehme M, Schulze J 2013 Solid-State Electron 83 87

    [5]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [6]

    Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [7]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [8]

    Saito S, Al-Attili A Z, Oda K, Ishikawa Y 2016 Semicond. Sci. Technol. 31 043002

    [9]

    Huang S H, Li C, Chen C Z, Wang C, Xie W M, Lin S Y, Shao M, Nie M X, Chen C Y 2016 Chin. Phys. B 25 066601

    [10]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald E, Tan S C, Nam D 2017 Nat. Commun. 8 1845

    [11]

    Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710

    [12]

    Liu L, Zhang M, Hu L J, Di Z F, Zhao S J 2014 J. Appl. Phys. 116 113105

    [13]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Yuan Z, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [14]

    Chow W W 2012 Appl. Phys. Lett. 100 191113

    [15]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese)[黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 61 036202]

    [16]

    Ridley B K 2013 Quantum Processes in Semiconductors (Oxford:Oxford University Press)

    [17]

    Lever L, Ikonic Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105

    [18]

    Fischetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [19]

    Wang X X, Li H F, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J F 2013 Opt. Lett. 38 652

    [20]

    Herring C, Vogt E 1956 Phys. Rev. 101 944

    [21]

    Mak G, Driel H 1994 Phys. Rev. B 49 16817

    [22]

    Zhou X Q, Driel H, Mak G 1994 Phys. Rev. B 50 5226

    [23]

    Claussen S A, Tasyurek E, Roth J E, Miller D 2010 Opt. Express 18 25596

  • [1]

    Koerner R, Oehme M, Gollhofer M, Schmid M, Kostecki K, Bechler S, Widmann D, Kasper E, Schulze J 2015 Opt. Express 23 14815

    [2]

    Lin G Y, Chen N L, Zhang L, Huang Z W, Huang W, Wang J Y, Xu J F, Chen S Y, Li C 2016 Materials 9 803

    [3]

    Lin G Y, Yi X H, Li C, Chen N L, Zhang L, Chen S Y, Huang W, Wang J Y, Xiong X H, Sun J M 2016 Appl. Phys. Lett. 109 141104

    [4]

    Kaschel M, Schmid M, Gollhofer M, Werner J, Oehme M, Schulze J 2013 Solid-State Electron 83 87

    [5]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [6]

    Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C, Michel J 2010 Opt. Lett. 35 679

    [7]

    Liu Z, Hu W X, Li C, Li Y M, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2012 Appl. Phys. Lett. 101 231108

    [8]

    Saito S, Al-Attili A Z, Oda K, Ishikawa Y 2016 Semicond. Sci. Technol. 31 043002

    [9]

    Huang S H, Li C, Chen C Z, Wang C, Xie W M, Lin S Y, Shao M, Nie M X, Chen C Y 2016 Chin. Phys. B 25 066601

    [10]

    Bao S, Kim D, Onwukaeme C, Gupta S, Saraswat K, Lee K H, Kim Y, Min D, Jung Y, Qiu H, Wang H, Fitzgerald E, Tan S C, Nam D 2017 Nat. Commun. 8 1845

    [11]

    Kurdi M E, Fishman G, Sauvage S, Boucaud P 2010 J. Appl. Phys. 107 013710

    [12]

    Liu L, Zhang M, Hu L J, Di Z F, Zhao S J 2014 J. Appl. Phys. 116 113105

    [13]

    Dutt B, Sukhdeo D S, Nam D, Vulovic B M, Yuan Z, Saraswat K C 2012 IEEE Photon. J. 4 2002

    [14]

    Chow W W 2012 Appl. Phys. Lett. 100 191113

    [15]

    Huang S H, Li C, Chen C Z, Zheng Y Y, Lai H K, Chen S Y 2012 Acta Phys. Sin. 61 036202 (in Chinese)[黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩 2012 61 036202]

    [16]

    Ridley B K 2013 Quantum Processes in Semiconductors (Oxford:Oxford University Press)

    [17]

    Lever L, Ikonic Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105

    [18]

    Fischetti M V, Laux S E 1996 J. Appl. Phys. 80 2234

    [19]

    Wang X X, Li H F, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J F 2013 Opt. Lett. 38 652

    [20]

    Herring C, Vogt E 1956 Phys. Rev. 101 944

    [21]

    Mak G, Driel H 1994 Phys. Rev. B 49 16817

    [22]

    Zhou X Q, Driel H, Mak G 1994 Phys. Rev. B 50 5226

    [23]

    Claussen S A, Tasyurek E, Roth J E, Miller D 2010 Opt. Express 18 25596

  • [1] Li Qi-Zhi, Zhang Shi-Long, Peng Ying-Ying. Resonant inelastic X-ray scattering study of charge density waves and elementary excitations in cuprate superconductors. Acta Physica Sinica, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [2] Qiu Yu-Jun, Li Heng-Xuan, Li Ya-Tao, Huang Chun-Pu, Li Wei-Hua, Zhang Xu-Tao, Liu Ying-Guang. Nanodot embedding based optimization of interfacial thermal conductance. Acta Physica Sinica, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [3] Liu Ying-Guang, Xue Xin-Qiang, Zhang Jing-Wen, Ren Guo-Liang. Thermal conductivity of materials based on interfacial atomic mixing. Acta Physica Sinica, 2022, 71(9): 093102. doi: 10.7498/aps.71.20211451
    [4] Liu Ying-Guang, Hao Jiang-Shuai, Ren Guo-Liang, Zhang Jing-Wen. Thermal conductivities of different period Si/Ge superlattices. Acta Physica Sinica, 2021, 70(7): 073101. doi: 10.7498/aps.70.20201789
    [5] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [6] Gu Yun-Feng, Wu Xiao-Li, Wu Hong-Zhang. Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles. Acta Physica Sinica, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [7] Yuan Zong-Qiang, Chu Min, Zheng Zhi-Gang. Energy carriers investigation in the Fermi-Pasta-Ulam β lattice. Acta Physica Sinica, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [8] Zhou Qing-Chun, Di Zun-Yan. Phonon effect on the quantum phase of a radiation field interacting with a tunneling-coupled quantum-dot molecule. Acta Physica Sinica, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [9] Bao Hua. Prediction of lattice thermal conductivity of solid argon from anharmonic lattice dynamics method. Acta Physica Sinica, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [10] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. The effect of thermal excitation on the interfacial friction. Acta Physica Sinica, 2012, 61(6): 063203. doi: 10.7498/aps.61.063203
    [11] Deng Yan-Ping, Lü Bin-Bin, Tian Qiang. Excitons and effects of phonons on excitons in asymmetric square quantum well. Acta Physica Sinica, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [12] Wu Yan-Zhao, Xie Ning, Liu Jian-Jing, Jiao Yong-Fang. Phonon spectra and specific heat calculation of single wall carbon nanotube. Acta Physica Sinica, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [13] Gao Dang-Li, Zhang Xiang-Yu, Zhang Zheng-Long, Xu Liang-Min, Lei Yu, Zheng Hai-Rong. Improvement on the up-conversion fluorescence emission in Tm3+ doped optical materials by adjusting phonon distribution. Acta Physica Sinica, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [14] Ding Ling-Yun, Gong Zhong-Liang, Huang Ping. Energy dissipation mechanism of phononic friction. Acta Physica Sinica, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [15] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [16] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [17] Xia Zhi-Lin, Fan Zheng-Xiu, Shao Jian-Da. Electrons-phonons collision velocity in films radiated by laser. Acta Physica Sinica, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [18] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [19] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
Metrics
  • Abstract views:  6727
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2017
  • Accepted Date:  09 December 2017
  • Published Online:  20 February 2019

/

返回文章
返回
Baidu
map