搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法

乔志伟

引用本文:
Citation:

总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法

乔志伟

The total variation constrained data divergence minimization model for image reconstruction and its Chambolle-Pock solving algorithm

Qiao Zhi-Wei
PDF
导出引用
  • 基于优化的迭代法,可以结合压缩感知和低秩矩阵等稀疏优化技术高精度地重建图像.其中,总变差最小(total variation minimization,TV)模型是一种简单有效的优化模型.传统的约束TV模型,使用数据保真项为约束项,TV正则项为目标函数.本文研究TV约束的、数据分离最小(TV constrained,data divergence minimization,TVcDM)新型TV模型及其求解算法.详细推导了TVcDM模型的Chambolle-Pock(CP)算法,验证了模型及算法的正确性;分析了算法的收敛行为;评估了模型的稀疏重建能力;分析了模型参数的选择对重建的影响及算法参数对收敛速率的影响.研究表明,TVcDM模型有高精度稀疏重建能力;TVcDM-CP算法确保收敛,但迭代过程中有振荡现象;TV限对重建有重要影响,参数值过大会引入噪声而过小会模糊图像细节;算法参数的不同选取会导致不同的收敛速率.
    Image reconstruction is an important inverse problem to reconstruct images from its transform. The two main reconstruction methods are the analytic method and the iterative method. The analytic method, for example, the filtered backprojection algorithm, needs complete projection data, so it is not competent to accurately reconstruct an image from sparse data. Thus the iterative method combined with optimization techniques has received more and more attention. The optimization-based iterative image reconstruction algorithm may accurately reconstruct images by the use of compressed sensing, low rank matrix and other sparse optimization techniques. Among them, the total variation (TV) minimization model is a simple but effective optimization model. The traditional, constrained TV model employs the data fidelity term as the constraint term and the TV regularization term as the objective function. In the present work, we study a novel, TV constrained, data divergence minimization (TVcDM) model and its solver. We derive in detail the Chambolle-Pock (CP) algorithm for solving the TVcDM model, verify the correctness of the model and its solver, analyze the convergence behavior of the algorithm, evaluate the sparse reconstruction ability of the TVcDM-CP algorithm and finally analyze the influence of the model parameters on reconstruction and the effect of algorithm parameters on convergence rate. The studies show that the TVcDM model may accurately reconstruct images from sparse-view projections. The TVcDM-CP algorithm may ensure convergence but the vibration phenomena may be observed in the convergence process. The model parameter, TV tolerance, has important influence on reconstruction quality, i. e. too big a value introduces noise whereas too small a value may smoothen the image details. Also, the studies reveal that different algorithm-parameter selections may lead to different convergence rates. The TVcDM-CP algorithm may be tailored and applied to other computed tomography scanning configurations and other imaging modalities. The necessary key work is just to design the corresponding system matrix and select the optimal model parameters and algorithm parameters according to the insights gained in the work.
      通信作者: 乔志伟, zqiao@sxu.edu.cn
    • 基金项目: 山西省自然科学基金(批准号:201601D011041)资助的课题.
      Corresponding author: Qiao Zhi-Wei, zqiao@sxu.edu.cn
    • Funds: Project supported by the Shanxi Provincial Natural Science Foundation of China (Grant No. 201601D011041).
    [1]

    Pan X, Sidky E Y, Vannier M 2009 Inverse Probl. 25 123009

    [2]

    Sidky E Y, Kao C M, Pan X 2006 J. X-Ray Sci. Technol. 14 119

    [3]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [4]

    Liu B, Katsevich A, Yu H 2016 J. X-Ray Sci. Technol. 25 1

    [5]

    Bian J, Siewerdsen J H, Han X, Sidky E Y, Prince J L, Pelizzari C A, Pan X 2010 Phys. Med. Biol. 55 6575

    [6]

    Bian J, Wang J, Han X, Sidky E Y, Shao L, Pan X 2012 Phys. Med. Biol. 58 205

    [7]

    Zhang Z, Han X, Pearson E, Pelizzari C, Sidky E Y, Pan X 2016 Phys. Med. Biol. 61 3387

    [8]

    Xia D, Langan D A, Solomon S B, Zhang Z, Chen B, Lai H, Sidky E Y, Pan X 2016 Phys. Med. Biol. 61 7300

    [9]

    Bian J, Yang K, Boone J M, Han X, Sidky E Y, Pan X 2014 Phys. Med. Biol. 59 2659

    [10]

    Han X, Pearson E, Pelizzari C, Alhallaq H, Sidky E Y, Bian J, Pan X 2015 Phys. Med. Biol. 60 4601

    [11]

    Yu H, Wang G 2010 Phys. Med. Biol. 55 3905

    [12]

    Sidky E Y, Pan X 2008 Phys. Med. Biol. 53 4777

    [13]

    Vogel C R, Oman M E 1996 SIAM J. Sci. Comp. 17 227

    [14]

    Sidky E Y, Kraemer D N, Roth E G, Ullberg C, Reiser I S, Pan X 2014 J. Med. Imag. 1 031007

    [15]

    Zhang Z, Ye J, Chen B, Perkins A E, Rose S, Sidky E Y, Kao C M, Xia D, Tung C H, Pan X 2016 Phys. Med. Biol. 61 6055

    [16]

    Boyd S, Parikh N, Chu E, Peleato B 2010 Found. Trends Mach. Learn. 3 1

    [17]

    Chambolle A, Pock T 2011 J. Math. Imag. Vision 40 120

    [18]

    Chambolle A, Pock T 2016 Acta Numer. 25 161

    [19]

    Pock T, Chambolle A 2011 IEEE Intern. Conf. Comp. Vision Barcelona Spain, November 6-13, 2011 p1762

    [20]

    Sidky E Y, Jrgensen J H, Pan X 2012 Phys. Med. Biol. 57 3065

    [21]

    Qiao Z, Zhang Z, Pan X, Epel B, Redler G, Xia D, Halpern H 2018 J. Magn. Reson. 294 24

    [22]

    Yu Z, Noo F, Dennerlein F, Wunderlich A, Lauritsch G, Hornegger J 2012 Phys. Med. Biol. 57 237

    [23]

    Qiao Z, Redler G, Gui Z, Qian Y, Epel B, Halpern H 2018 J. X-Ray Sci. Technol. 26 83

    [24]

    Siddon R L 1985 Med. Phys. 12 252

    [25]

    Joseph P M 1982 Med. Imag. IEEE Trans. on 1 192

    [26]

    De Man B, Basu S 2004 Phys. Med. Biol. 49 2463

  • [1]

    Pan X, Sidky E Y, Vannier M 2009 Inverse Probl. 25 123009

    [2]

    Sidky E Y, Kao C M, Pan X 2006 J. X-Ray Sci. Technol. 14 119

    [3]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [4]

    Liu B, Katsevich A, Yu H 2016 J. X-Ray Sci. Technol. 25 1

    [5]

    Bian J, Siewerdsen J H, Han X, Sidky E Y, Prince J L, Pelizzari C A, Pan X 2010 Phys. Med. Biol. 55 6575

    [6]

    Bian J, Wang J, Han X, Sidky E Y, Shao L, Pan X 2012 Phys. Med. Biol. 58 205

    [7]

    Zhang Z, Han X, Pearson E, Pelizzari C, Sidky E Y, Pan X 2016 Phys. Med. Biol. 61 3387

    [8]

    Xia D, Langan D A, Solomon S B, Zhang Z, Chen B, Lai H, Sidky E Y, Pan X 2016 Phys. Med. Biol. 61 7300

    [9]

    Bian J, Yang K, Boone J M, Han X, Sidky E Y, Pan X 2014 Phys. Med. Biol. 59 2659

    [10]

    Han X, Pearson E, Pelizzari C, Alhallaq H, Sidky E Y, Bian J, Pan X 2015 Phys. Med. Biol. 60 4601

    [11]

    Yu H, Wang G 2010 Phys. Med. Biol. 55 3905

    [12]

    Sidky E Y, Pan X 2008 Phys. Med. Biol. 53 4777

    [13]

    Vogel C R, Oman M E 1996 SIAM J. Sci. Comp. 17 227

    [14]

    Sidky E Y, Kraemer D N, Roth E G, Ullberg C, Reiser I S, Pan X 2014 J. Med. Imag. 1 031007

    [15]

    Zhang Z, Ye J, Chen B, Perkins A E, Rose S, Sidky E Y, Kao C M, Xia D, Tung C H, Pan X 2016 Phys. Med. Biol. 61 6055

    [16]

    Boyd S, Parikh N, Chu E, Peleato B 2010 Found. Trends Mach. Learn. 3 1

    [17]

    Chambolle A, Pock T 2011 J. Math. Imag. Vision 40 120

    [18]

    Chambolle A, Pock T 2016 Acta Numer. 25 161

    [19]

    Pock T, Chambolle A 2011 IEEE Intern. Conf. Comp. Vision Barcelona Spain, November 6-13, 2011 p1762

    [20]

    Sidky E Y, Jrgensen J H, Pan X 2012 Phys. Med. Biol. 57 3065

    [21]

    Qiao Z, Zhang Z, Pan X, Epel B, Redler G, Xia D, Halpern H 2018 J. Magn. Reson. 294 24

    [22]

    Yu Z, Noo F, Dennerlein F, Wunderlich A, Lauritsch G, Hornegger J 2012 Phys. Med. Biol. 57 237

    [23]

    Qiao Z, Redler G, Gui Z, Qian Y, Epel B, Halpern H 2018 J. X-Ray Sci. Technol. 26 83

    [24]

    Siddon R L 1985 Med. Phys. 12 252

    [25]

    Joseph P M 1982 Med. Imag. IEEE Trans. on 1 192

    [26]

    De Man B, Basu S 2004 Phys. Med. Biol. 49 2463

  • [1] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [2] 陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋. 强散射过程与双随机相位加密过程的等价性分析.  , 2021, 70(13): 134201. doi: 10.7498/aps.70.20201903
    [3] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究.  , 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [4] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用.  , 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [5] 张茜, 刘光斌, 余志勇, 郭金库. 一种面向中继协作频谱感知系统的自适应全局最优化算法.  , 2015, 64(1): 018404. doi: 10.7498/aps.64.018404
    [6] 杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健. S波段微波热致超声成像系统研究.  , 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [7] 曹小群, 皇群博, 刘柏年, 朱孟斌, 余意. 基于对偶数理论的资料同化新方法.  , 2015, 64(13): 130502. doi: 10.7498/aps.64.130502
    [8] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法.  , 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [9] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法.  , 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [10] 王林元, 刘宏奎, 李磊, 闫镔, 张瀚铭, 蔡爱龙, 陈建林, 胡国恩. 基于稀疏优化的计算机断层成像图像不完全角度重建综述.  , 2014, 63(20): 208702. doi: 10.7498/aps.63.208702
    [11] 丁亮, 刘培国, 何建国, Joe LoVetri. 一种金属腔体中微波断层成像的最优分层非均一背景.  , 2014, 63(18): 184102. doi: 10.7498/aps.63.184102
    [12] 王林元, 张瀚铭, 蔡爱龙, 闫镔, 李磊, 胡国恩. 非精确交替方向总变分最小化重建算法.  , 2013, 62(19): 198701. doi: 10.7498/aps.62.198701
    [13] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究.  , 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [14] 张宇, 张晓娟, 方广有. 大尺度分层介质电特性参数的反演方法研究.  , 2013, 62(4): 044204. doi: 10.7498/aps.62.044204
    [15] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究.  , 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [16] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [17] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法.  , 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] 李树有, 都志辉, 吴梦月, 朱静, 李三立. 模拟退火算法的并行实现及其应用.  , 2001, 50(7): 1260-1263. doi: 10.7498/aps.50.1260
计量
  • 文章访问数:  8265
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-27
  • 修回日期:  2018-07-02
  • 刊出日期:  2018-10-05

/

返回文章
返回
Baidu
map