Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A temperature and emissivity separation algorithm based on maximum entropy estimation of alpha spectrum's scaling and translation

Liu Jun-Chi Li Hong-Wen Wang Jian-Li Liu Xin-Yue Ma Xin-Xue

Citation:

A temperature and emissivity separation algorithm based on maximum entropy estimation of alpha spectrum's scaling and translation

Liu Jun-Chi, Li Hong-Wen, Wang Jian-Li, Liu Xin-Yue, Ma Xin-Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the thermal infrared (TIR) waveband, solving the target emissivity spectrum and temperature leads to an ill-posed problem in which the number of unknown parameters is larger than that of available measurements. Generally, the approaches developed for solving this kind of problems are called, by a joint name, the TES (temperature and emissivity separation) algorithm. As is shown in the name, the TES algorithm is dedicated to separating the target temperature and emissivity in the calculating procedure. In this paper, a novel method called the new MaxEnt (maximum entropy) TES algorithm is proposed, which is considered as a promotion of the MaxEnt TES algorithm proposed by Barducci. The maximum entropy estimation is utilized as the basic framework in the two preceding algorithms, so that the two algorithms both could make temperature and emissivity separation, independent of experiential information derived by some special data bases. As a result, the two algorithms could be applied to solve the temperature and emissivity spectrum of the targets which are absolutely unknown to us. However, what makes the two algorithms different is that the alpha spectrum derived by the ADE (alpha derived emissivity) method is considered as priori information to be added in the new MaxEnt TES algorithm. Based on the Wien approximation, the ADE method is dedicated to the calculation of the alpha spectrum which has a similar distribution to the true emissivity spectrum. Based on the preceding promotion, the new MaxEnt TES algorithm keeps a simpler mathematical formalism. Without any doubt, the new MaxEnt TES algorithm provides a faster computation for large volumes of data (i.e. hyperspectral images of the Earth). Some numerical simulations have been performed; the data and results show that, the maximum RMSE of emissivity estimation is 0.017, the maximum absolute error of temperature estimation is 0.62 K. Added with Gaussian white noise in which the signal to noise ratio is measured to be 11, the relative RMSE of emissivity estimation is 2.67%, the relative error of temperature estimation is 1.26%. Conclusion shows that the new MaxEnt TES algorithm may achieve high accuracy and fast calculating speed, and also get nice robustness against noise.
      Corresponding author: Li Hong-Wen, lihongwen1970@yahoo.com
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AAXXX1003X).
    [1]

    Liu E C, Zheng X B, Li X, Zhang Y N 2013 Optics and Precision Engineering 21 608 (in Chinese) [刘恩超, 郑小兵, 李新, 张艳娜 2013 光学精密工程 21 608]

    [2]

    Yang C Y, Cao L H, Zhang J P 2014 Optics and Precision Engineering 22 1751 (in Chinese) [杨词银, 曹立华, 张建萍 2014 光学精密工程 22 1751]

    [3]

    Li N, Zhang Y F, Liu C X, Cao L H, Guo L H 2014 Optics and Precision Engineering 22 2054 (in Chinese) [李宁, 张云峰, 刘春香, 曹立华, 郭立红 2014 光学精密工程 22 2054]

    [4]

    Kealy P S, Hook S J 1993 IEEE Trans. Geosci. Remote Sensing 31 1155

    [5]

    Wan Z, Li Z L 1997 IEEE Trans. Geosci. Remote Sensing 35 980

    [6]

    Li Z L, Becker F, Stoll M P, Wang Z 1990 Remote Sensing of Environments 69 197

    [7]

    Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S, Kahle A B 1998 IEEE Trans. Geosci. Remote Sensing 36 1113

    [8]

    Xu Z, Zhao H J 2009 Acta Optica Sinica 29 394 (in Chinese) [徐州, 赵慧洁 2009 光学学报 29 394]

    [9]

    Yang H, Zhang L F, Zhang X W, Fang C H, Tong Q X 2011 Journal of Remote Sensing 15 1242 (in Chinese) [杨杭, 张立福, 张学文, 房丛卉, 童庆禧 2011 遥感学报 15 1242]

    [10]

    Kahle A B, Madura D P, Soha J M 1980 Applied Optics 19 2279

    [11]

    Wan Z, Dozier J 1989 IEEE Trans. Geosci. Remote Sensing 27 268

    [12]

    Tang S H, Zhu Q J, Su L H 2005 J. Infrared Millim. Waves 24 286 (in Chinese) [唐世浩, 朱启疆, 苏理宏 2005 红外与毫米波学报 24 286]

    [13]

    Price J C 1984 J. Geophys. Res. 89 7231

    [14]

    Morgan J A 2005 IEEE Trans. Geosci. Remote Sensing 43 1279

    [15]

    Liu Y J, Yang Z D 2001 Principle and Algorithm of Remote Sensing Information Processing for MODIS (Beijing: Sciences Press) p232 (in Chinese) [刘玉洁, 杨忠东 2001 MODIS遥感信息处理原理与算法(北京: 科学出版社) 第232页]

    [16]

    Barducci A, Pippi I 1996 IEEE Trans. Geosci. Remote Sensing 34 681

    [17]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2014 IEEE Trans. Geosci. Remote Sensing 53 738

    [18]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2013 Infrared Physics & Technology 56 12

    [19]

    Kealy P S, Gabell A R 1990 Proc. 2nd TIMS Workshop JPL Pub 90-55 11-15

    [20]

    Jiang X K, Zhang Q C, Shi H T, Mao L, Cheng T, Wu X P 2011 Acta Phys. Sin. 60 054401 (in Chinese) [蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平 2011 60 054401]

    [21]

    Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y, Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese) [周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶 2014 63 148501]

    [22]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 59 7523]

  • [1]

    Liu E C, Zheng X B, Li X, Zhang Y N 2013 Optics and Precision Engineering 21 608 (in Chinese) [刘恩超, 郑小兵, 李新, 张艳娜 2013 光学精密工程 21 608]

    [2]

    Yang C Y, Cao L H, Zhang J P 2014 Optics and Precision Engineering 22 1751 (in Chinese) [杨词银, 曹立华, 张建萍 2014 光学精密工程 22 1751]

    [3]

    Li N, Zhang Y F, Liu C X, Cao L H, Guo L H 2014 Optics and Precision Engineering 22 2054 (in Chinese) [李宁, 张云峰, 刘春香, 曹立华, 郭立红 2014 光学精密工程 22 2054]

    [4]

    Kealy P S, Hook S J 1993 IEEE Trans. Geosci. Remote Sensing 31 1155

    [5]

    Wan Z, Li Z L 1997 IEEE Trans. Geosci. Remote Sensing 35 980

    [6]

    Li Z L, Becker F, Stoll M P, Wang Z 1990 Remote Sensing of Environments 69 197

    [7]

    Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S, Kahle A B 1998 IEEE Trans. Geosci. Remote Sensing 36 1113

    [8]

    Xu Z, Zhao H J 2009 Acta Optica Sinica 29 394 (in Chinese) [徐州, 赵慧洁 2009 光学学报 29 394]

    [9]

    Yang H, Zhang L F, Zhang X W, Fang C H, Tong Q X 2011 Journal of Remote Sensing 15 1242 (in Chinese) [杨杭, 张立福, 张学文, 房丛卉, 童庆禧 2011 遥感学报 15 1242]

    [10]

    Kahle A B, Madura D P, Soha J M 1980 Applied Optics 19 2279

    [11]

    Wan Z, Dozier J 1989 IEEE Trans. Geosci. Remote Sensing 27 268

    [12]

    Tang S H, Zhu Q J, Su L H 2005 J. Infrared Millim. Waves 24 286 (in Chinese) [唐世浩, 朱启疆, 苏理宏 2005 红外与毫米波学报 24 286]

    [13]

    Price J C 1984 J. Geophys. Res. 89 7231

    [14]

    Morgan J A 2005 IEEE Trans. Geosci. Remote Sensing 43 1279

    [15]

    Liu Y J, Yang Z D 2001 Principle and Algorithm of Remote Sensing Information Processing for MODIS (Beijing: Sciences Press) p232 (in Chinese) [刘玉洁, 杨忠东 2001 MODIS遥感信息处理原理与算法(北京: 科学出版社) 第232页]

    [16]

    Barducci A, Pippi I 1996 IEEE Trans. Geosci. Remote Sensing 34 681

    [17]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2014 IEEE Trans. Geosci. Remote Sensing 53 738

    [18]

    Barducci A, Guzzi D, Lastri C, Marcoionni P, Nardino V, Pippi I 2013 Infrared Physics & Technology 56 12

    [19]

    Kealy P S, Gabell A R 1990 Proc. 2nd TIMS Workshop JPL Pub 90-55 11-15

    [20]

    Jiang X K, Zhang Q C, Shi H T, Mao L, Cheng T, Wu X P 2011 Acta Phys. Sin. 60 054401 (in Chinese) [蒋兴凯, 张青川, 史海涛, 毛亮, 程腾, 伍小平 2011 60 054401]

    [21]

    Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y, Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese) [周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶 2014 63 148501]

    [22]

    Sun C M, Yuan Y, Zhang X B 2010 Acta Phys. Sin. 59 7523 (in Chinese) [孙成明, 袁艳, 张修宝 2010 59 7523]

  • [1] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [4] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] Chu Hua-Qiang, Feng Yan, Cao Wen-Jian, Ren Fei, Gu Ming-Yan. Comprehensive evaluation and analysis of the weighted-sum-of-gray-gases radiation model. Acta Physica Sinica, 2017, 66(9): 094207. doi: 10.7498/aps.66.094207
    [6] Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia. Study on the forward of mashgas CO temperature and concentration by the remote passive measurement. Acta Physica Sinica, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [7] Deng Chun-Yu, Hou Shang-Lin, Lei Jing-Li, Wang Dao-Bin, Li Xiao-Xiao. Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers. Acta Physica Sinica, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [8] Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo. Influences of material defects and temperature on current-driven domain wall mobility. Acta Physica Sinica, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [9] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [10] Jiang Zhong-Ying, Zhang Guo-Liang, Ma Jing, Zhu Tao. Lipid exhange between membranes: effects of temperature and ionic strength. Acta Physica Sinica, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [11] Jin Ming, Bai Ming, Miao Jun-Gang. Emissivity study of the array shaped blackbody in the microwave band. Acta Physica Sinica, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [12] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] Geng Xi-Zhao, Hasi Wu-Li, Guo Xiang-Yu, Li Xing, Lin Dian-Yang, He Wei-Ming, Fan Rui-Qing, Lü Zhi-Wei. Study on measuring the kinematic viscosity of liquid medium based on the energy reflectivity of SBS. Acta Physica Sinica, 2011, 60(5): 054208. doi: 10.7498/aps.60.054208
    [14] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [15] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [16] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [17] Li Rong-Hua, Meng Wei-Min, Peng Ying-Quan, Ma Chao-Zhu, Wang Run-Sheng, Xie Hong-Wei, Wang Ying, Ye Zao-Chen. Investigation on the effect of cathode work function and exciton generation rate on the open-circuit voltage of single layer organic solar cell with Schottky contact. Acta Physica Sinica, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [18] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [19] Wang Qi-Guang, Zhang Zeng-Ping. The research of detecting abrupt climate change with approximate entropy. Acta Physica Sinica, 2008, 57(3): 1976-1983. doi: 10.7498/aps.57.1976
    [20] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
Metrics
  • Abstract views:  6043
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2015
  • Accepted Date:  17 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map