Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Beamspace time-frequency analysis for identification of underwater tone noise sources

Xu Ling-Ji Yang Yi-Xin Yang Long

Citation:

Beamspace time-frequency analysis for identification of underwater tone noise sources

Xu Ling-Ji, Yang Yi-Xin, Yang Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The noise emitted by an underwater vehicle consists of several strong tones superimposed on a broad-band radiated noise component. Among them, the stable low-frequency tone noise induced by the reciprocating movements of the auxiliary machines in the underwater vehicle, carries characteristic information of the vehicle and is necessary for long-distance detection. Therefore, identification of the tone noise sources of an underwater vehicle is significant for noise reduction. On the basis of the joint information of space-time-frequency, beamspace time-frequency analysis (TFA) scheme is proposed for identification of low-frequency tone noise sources of underwater moving vehicle. First, the Doppler signals formed when the tone noise sources pass through the closest point of approach (CPA) are separated in time domain, by using superdirectivity beamforming of a small aperture circular array. The output signals can be approximated in linear form, i. e., LFM signal. After the LFM signals from the narrow beam are processed by two TFA methods of pseudo Wigner - Ville distribution and chirplet transform (CT), the time-frequency images of the noise signals are obtained. Then, the CPA time of each tone noise sources can be estimated by using peak search of the time-frequency images. At last, by converting the time coordinate to space coordinate and comparing with a reference source whose CPA time and position are known in advance, the positions of the low-frequency tone noise sources on the underwater vehicle are identified. The proposed scheme is different from the focused beamforming method, which scans the beam angle after eliminating the Doppler effect. Besides, due to no need of decorrelation usually used in the focused beamforming method, beamspace TFA scheme resolves the problem that array aperture is limited for identification of coherent noise sources of an underwater vehicle. The aperture of the used array can be reduced to meter-scale even when the frequencies of the tone noise are low. Although the array gain of superdirectivity beamforming decreases in nonisotropic noise field, the main lobe of the beam still keeps the same shape. Therefore, the performance of the proposed scheme is robust. Simulation analysis shows the following results: (1) Both the two beamspace TFA methods can precisely identify the underwater tone noise sources through a small aperture circular array, the radius of which is equal to 1.6 m, and the localization errors are less than 1 m when the signal-to-noise ratios are moderate; (2) The higher the frequencies of the tone noises are, the better the localization accuracy of beamspace TFA methods obtain; (3) The proposed scheme is less sensitive to the velocity of the underwater moving vehicle, and the localization results just have very small difference under various velocities; (4) The localization accuracy is related to distance, and decade meters is a reasonable choose for actual noise measurement; (5) Beamspace CT has better resolving accuracy when the information of measurement system is given, so the choice of the two beamspace TFA methods can be decided according to the actual measurement condition.
      Corresponding author: Yang Yi-Xin, yxyang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274253).
    [1]

    He Z Y 1996 Progress in Physics 16 600 (in Chinese) [何祚镛 1996 物理学进展 16 100]

    [2]

    Yang D G, Wang Z T, Li B, Luo Y G, Lian X M 2011 J. Sound Vib. 330 1352

    [3]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 59 4738]

    [4]

    Park S H, Kim Y H 2001 J. Acoust. Soc. Am. 110 2326

    [5]

    Chen M Y, Shang D J, Li Q, Liu Y W 2011 Acta Acoust. 36 489 (in Chinese) [陈梦英, 商德江, 李琪, 刘永伟 2011 声学学报 36 489]

    [6]

    Yang D S, Guo X X, Shi S G, Hu B 2012 J. Vib. Shock 31 13 (in Chinese) [杨德森, 郭小霞, 时胜国, 胡博 2012 振动与冲击 31 13]

    [7]

    Hui J, Hu D, Hui J Y, Yin J W 2007 Acta Acoust. 32 356 (in Chinese) [惠娟, 胡丹, 惠俊英, 殷敬伟 2007 声学学报 32 356]

    [8]

    Zhai C P, Zhang M W, Liu Y D, Zhang Y 2013 Acta Acoust. 38 281 (in Chinese) [翟春平, 张明伟, 刘雨东, 张宇 2013 声学学报 38 281]

    [9]

    Cigada A, Ripamonti F, Vanali M 2007 Mech. Syst. Signal Process. 21 3645

    [10]

    Yan G H, Chen Z F, Sun J C 2009 Journal of Northwestern Polytechnical University 27 378 (in Chinese) [严光洪, 陈志菲, 孙进才2009 西北工业大学学报 27 378]

    [11]

    Liu Y C, He Y A, Shang De J, Shang D J, Sun C. 2013 Acta Acoust. 38 533 (in Chinese) [刘月蝉, 何元安, 商德江, 尚大晶, 孙超 2013 声学学报 38 533]

    [12]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [13]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302. (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [14]

    Wang Z W, Xu L J, Yang Y X, Wang X B 2012 J. Vib. Shock 31 118 (in Chinese) [王志伟, 徐灵基, 杨益新, 王秀波 2012振动与冲击 31 118]

    [15]

    Brooks T F, Humphreys William M 2006 J. Sound Vib. 294 856

    [16]

    Fleury V, Bulte J 2011 J. Acoust. Soc. Am. 129 1417

    [17]

    Fleury V, Bulte J 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, MA, May 8-10, p2654

    [18]

    Yardibi T, Li J 2010 J. Acoust. Soc. Am. 127 2920

    [19]

    Xu L J, Yang Y X 2014 J. Electron. Inform. Tech. 36 1119 (in Chinese) [徐灵基, 杨益新 2014 电子与信息学报 36 1119]

    [20]

    Tian F, Yang Y X, Wu Y Z, Yang L 2014 J. Electron. Inform. Tech. 36 2889 (in Chinese) [田丰, 杨益新, 吴姚振, 杨龙 2014 电子与信息学报 36 2889]

    [21]

    Sun C 2007 Underwater Sensor Array Signal Processing (Xi'an: Northwestern Polytechnical University Press) pp80-82 (in Chinese) [孙超 2007 水下多传感器阵列信号处理 (西安: 西北工业大学出版社) 第80–82页]

    [22]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [23]

    Xu L J, Yang Y X, Yang L 2014 Acta Electron. Sinica 42 2247 (in Chinese) [徐灵基, 杨益新, 杨龙 2014 电子学报 42 2247]

    [24]

    Boashash B 2003 Time Frequency Signal Analysis and Processing: A Comprehensive Reference (London: Elsevier) pp48-53

    [25]

    Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G 2014 IEEE Trans. Signal Process. 62 2751

  • [1]

    He Z Y 1996 Progress in Physics 16 600 (in Chinese) [何祚镛 1996 物理学进展 16 100]

    [2]

    Yang D G, Wang Z T, Li B, Luo Y G, Lian X M 2011 J. Sound Vib. 330 1352

    [3]

    Yang D G, Luo Y G, Li B, Li K Q, Lian X M 2010 Acta Phys. Sin. 59 4738 (in Chinese) [杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉 2010 59 4738]

    [4]

    Park S H, Kim Y H 2001 J. Acoust. Soc. Am. 110 2326

    [5]

    Chen M Y, Shang D J, Li Q, Liu Y W 2011 Acta Acoust. 36 489 (in Chinese) [陈梦英, 商德江, 李琪, 刘永伟 2011 声学学报 36 489]

    [6]

    Yang D S, Guo X X, Shi S G, Hu B 2012 J. Vib. Shock 31 13 (in Chinese) [杨德森, 郭小霞, 时胜国, 胡博 2012 振动与冲击 31 13]

    [7]

    Hui J, Hu D, Hui J Y, Yin J W 2007 Acta Acoust. 32 356 (in Chinese) [惠娟, 胡丹, 惠俊英, 殷敬伟 2007 声学学报 32 356]

    [8]

    Zhai C P, Zhang M W, Liu Y D, Zhang Y 2013 Acta Acoust. 38 281 (in Chinese) [翟春平, 张明伟, 刘雨东, 张宇 2013 声学学报 38 281]

    [9]

    Cigada A, Ripamonti F, Vanali M 2007 Mech. Syst. Signal Process. 21 3645

    [10]

    Yan G H, Chen Z F, Sun J C 2009 Journal of Northwestern Polytechnical University 27 378 (in Chinese) [严光洪, 陈志菲, 孙进才2009 西北工业大学学报 27 378]

    [11]

    Liu Y C, He Y A, Shang De J, Shang D J, Sun C. 2013 Acta Acoust. 38 533 (in Chinese) [刘月蝉, 何元安, 商德江, 尚大晶, 孙超 2013 声学学报 38 533]

    [12]

    Shi J, Yang D S, Shi S G 2011 Acta Phys. Sin. 60 064301 (in Chinese) [时洁, 杨德森, 时胜国 2011 60 064301]

    [13]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302. (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [14]

    Wang Z W, Xu L J, Yang Y X, Wang X B 2012 J. Vib. Shock 31 118 (in Chinese) [王志伟, 徐灵基, 杨益新, 王秀波 2012振动与冲击 31 118]

    [15]

    Brooks T F, Humphreys William M 2006 J. Sound Vib. 294 856

    [16]

    Fleury V, Bulte J 2011 J. Acoust. Soc. Am. 129 1417

    [17]

    Fleury V, Bulte J 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, MA, May 8-10, p2654

    [18]

    Yardibi T, Li J 2010 J. Acoust. Soc. Am. 127 2920

    [19]

    Xu L J, Yang Y X 2014 J. Electron. Inform. Tech. 36 1119 (in Chinese) [徐灵基, 杨益新 2014 电子与信息学报 36 1119]

    [20]

    Tian F, Yang Y X, Wu Y Z, Yang L 2014 J. Electron. Inform. Tech. 36 2889 (in Chinese) [田丰, 杨益新, 吴姚振, 杨龙 2014 电子与信息学报 36 2889]

    [21]

    Sun C 2007 Underwater Sensor Array Signal Processing (Xi'an: Northwestern Polytechnical University Press) pp80-82 (in Chinese) [孙超 2007 水下多传感器阵列信号处理 (西安: 西北工业大学出版社) 第80–82页]

    [22]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [23]

    Xu L J, Yang Y X, Yang L 2014 Acta Electron. Sinica 42 2247 (in Chinese) [徐灵基, 杨益新, 杨龙 2014 电子学报 42 2247]

    [24]

    Boashash B 2003 Time Frequency Signal Analysis and Processing: A Comprehensive Reference (London: Elsevier) pp48-53

    [25]

    Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G 2014 IEEE Trans. Signal Process. 62 2751

  • [1] Yin Bi-Huan, He Zi, Ding Da-Zhi. Rotating speed estimation of spinning objects based on rotational Doppler effect. Acta Physica Sinica, 2023, 72(17): 174203. doi: 10.7498/aps.72.20230807
    [2] Luo Yong, Yang Dang-Guo, Wu Cong-Hai, Li Hu, Zhang Shu-Hai, Wu Jun-Qiang. Waves model of three-dimensional cavity flow and its oscillation mode evolution. Acta Physica Sinica, 2022, 71(19): 194301. doi: 10.7498/aps.71.20220922
    [3] Luo Xiao-Jun, Shi Li-Hua, Zhang Qi, Qiu Shi, Li Yun, Liu Yi-Cheng, Duan Yan-Tao. Analysis of optical radiation dispersion characteristics of an artificially triggered lightning return stroke process. Acta Physica Sinica, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [4] Gao De-Yang, Gao Da-Zhi, Chi Jing, Wang Liang, Song Wen-Hua. Doppler-warping transform and its application to estimating acoustic target velocity. Acta Physica Sinica, 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [5] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [6] Cui An-Jing, Li Dao-Jing, Zhou Kai, Wang Yv, Hong Jun. On method of composing low frequency signals based on array structures. Acta Physica Sinica, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [7] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [8] Guo Li-Ren, Hu Yi-Hua, Dong Xiao, Li Min-Le. Translation compensation and micro-motion parameter estimation of laser micro-Doppler effect. Acta Physica Sinica, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [9] Liu Song, Luo Chun-Rong, Zhai Shi-Long, Chen Huai-Jun, Zhao Xiao-Peng. Inverse Doppler effect of acoustic metamaterial with negative mass density. Acta Physica Sinica, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [10] Guo Jun-Yuan, Yang Shi-E, Piao Sheng-Chun, Mo Ya-Xiao. Direction-of-arrival estimation based on superdirective multi-pole vector sensor array for low-frequency underwater sound sources. Acta Physica Sinica, 2016, 65(13): 134303. doi: 10.7498/aps.65.134303
    [11] Yang Yang, Li Xiu-Kun. Blind source extraction based on time-frequency characteristics for underwater object acoustic scattering. Acta Physica Sinica, 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [12] Liu Ya-Qi, Liu Cheng-Cheng, Zhao Yong-Jun, Zhu Jian-Dong. A blind beamforming algorithm for multitarget signals based on time-frequency analysis. Acta Physica Sinica, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [13] Zhou Jie, Jiang Hao, Hisakazu Kikuchi, Shao Gen-Fu. Geometrical statistical channel model and performance investigation for multi-antenna systems in wireless communications. Acta Physica Sinica, 2014, 63(14): 140506. doi: 10.7498/aps.63.140506
    [14] Jiang Hao, Zhou Jie, Hisakazu Kikuchi, Shao Gen-Fu. Analysis of Doppler shift in a three-dimensional scattering channel model. Acta Physica Sinica, 2014, 63(4): 048702. doi: 10.7498/aps.63.048702
    [15] Li Kun, Fang Shi-Liang, An Liang. Studies on mode feature extraction and source range and depth estimation with a single hydrophone based on the dispersion characteristic. Acta Physica Sinica, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [16] Li Yan-Chao, Wang Chun-Hui, Gao Long, Cong Hai-Fang, Qu Yang. Multi-beam laser heterodyne measurement with ultra-precision for the glass thickness based on oscillating mirror sinusoidal modulation. Acta Physica Sinica, 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [17] Lü Jun, Zhao Zheng-Yu, Zhou Chen, Zhang Yuan-Nong. Effect of finite-amplitude acoustic wave nonlinear interaction on farfield directivity of sound source. Acta Physica Sinica, 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [18] Yang Dian-Ge, Luo Yu-Gong, Li Bing, Li Ke-Qiang, Lian Xiao-Min. Acoustic holography method for measuring moving sound source with correction for Doppler effect in time-domain. Acta Physica Sinica, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [19] A possible way for dolphin and other animals to handle Doppler signals. Acta Physica Sinica, 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
    [20] Zuo Zhan-Chun, Sun Jiang, Wu Ling-An, Fu Pan-Ming. Doppler-free three-photon resonant six-wave mixing. Acta Physica Sinica, 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
Metrics
  • Abstract views:  6046
  • PDF Downloads:  269
  • Cited By: 0
Publishing process
  • Received Date:  16 January 2015
  • Accepted Date:  23 April 2015
  • Published Online:  05 September 2015

/

返回文章
返回
Baidu
map