-
A method of range and depth estimation was studied using a single hydrophone based on the dispersive characteristic and time-frequency analysis for low frequency underwater acoustic pulse signals in shallow water environment. First, the signal received on a single hydrophone can be decomposed into a series of modes within the frame work of normal mode theory, and then the dispersive characteristic of the propagating modes can be analyzed using the time-frequency analysis. In order to improve the time-frequency resolution, the use of the time-frequency distribution with adaptive radial-Gaussian kernel extracts the arrival time difference of propagating modes in dispersion curve, which can be used to estimate source range. Mode energy can be extracted using binary time-frequency mask filtering based on multi-mode joint matching processing; and the source depth can be estimated by comparing the differences of the mode energy of the real data and simulated replica data, yielding a contrast function. Simulation results from a shallow-water Pekeris waveguide show that the time-frequency distribution with adaptive radial-Gaussian kernel represents well the dispersion characteristics of the underwater acoustic pulse signals, provides higher time-frequency resolution and overcomes the problem of the inherent limit for the time resolution and frequency resolution in the traditional short-time Fourier transform, so that the modes can be separated and identified more easily in the time-frequency plane. From the result of the range estimation, the different mode combinations have different results of the range estimation. The range estimation result can be obtained accurately by using the mode with high energy in the time-frequency plane. The relative error in range estimation is less than 2% by using the mode with high energy. In terms of the depth estimation, the more the number of joint matching mode, the more sharp peak and low fake peaks the contrast function has, so that the depth estimation is further improved by incorporating more modes. This research has great significance for studying the extraction and separation of low frequency underwater acoustic pulse signals.
-
Keywords:
- dispersive channel /
- time-frequency analysis /
- single hydrophone /
- localization
[1] Porter M B, Tolstoy A 1994 J. Acoust. Soc. Am. 2 161
[2] Xu W, Xiao Z, Yu L 2011 IEEE J. Ocean. Eng. 36 273
[3] Wu K M, Ling Q, Wu L X 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, September14-16, 2011 p1
[4] Wang Q, Jiang Q 2010 EURASIP J. Advances. Signal Processing. 483524 1
[5] Frazer L N, Pecholcs P I 1990 J. Acoust. Soc. Am. 88 995
[6] Lee Y P 1998 IEEE Oceans'98 Conference Proceedings Nice, September 28-October 1 1998 p1074
[7] Jesus S M, Porter M B, Y Stéphan, Démoulin X, Rodriguez O C, Ferreira Coelho E M M 2000 IEEE J. Ocean. Eng. 25 337
[8] Touzé G L, Torras J, Nicolas B, Mars J 2008 IEEE Oceans, Quebec City, September 15-18, 2008 p1
[9] Jemmott C W, Culver R L, Bose N K 2008 IEEE Conference on Signal, Systems and Computers, Pacific Grove, October 26-29, 2008 p283
[10] Tao H L, Hickman G, Krolik J L, Kemp M 2007 IEEE Oceans Aberdeen, June 18-21, 2007 p1
[11] Gac L J C, Asch Mark, Stéphan Y, Demoulin X 2003 IEEE J. Ocean. Eng. 28 479
[12] Tiemann C O, Thode A M, Straley J, O'Connell Victoria, Folkert K 2006J. Acoust. Soc. Am. 120 2355
[13] Chen C S, Miller J H, Boudreaux G F, Potty G R, Lazauski C J 2003 IEEE Oceans 2003. proceedings, San Diego, September 22-26, 2003 p2903
[14] Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE Europe Oceans Brest, June 20-23, 2005 p725
[15] Ioana C, Jarrot A, Gervaise C, Stéphan Y, Quinquis A 2010 IEEE Trans. Signal Processing. 58 4093
[16] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics) p337
[17] Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 IEEE Oceans' 2009 Biloxi, October 26-29, 2009 p1
[18] Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61
[19] Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119
[20] Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP J. Advances. Signal Processing. 304103 1
[21] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[22] Baraniuk R G, Jones D L 1993 Signal Processing 32 263
[23] Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471
[24] Zhang D M, Li Z L, Zhang R H 2005 Acta Acoustica 30 415 (in Chinese) [张德明, 李整林, 张仁和 2005 声学学报 30 415]
[25] Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 30 54]
[26] Nicolas B, Mars J I, Lacoume J L 2006 EURASIP J. Applied Signal Processing 65901 1
[27] Rein van den B, Richard van B 1992 Computer Vision, Graphics, And Image Processing: Graphical Models And Image Processing 54 252
-
[1] Porter M B, Tolstoy A 1994 J. Acoust. Soc. Am. 2 161
[2] Xu W, Xiao Z, Yu L 2011 IEEE J. Ocean. Eng. 36 273
[3] Wu K M, Ling Q, Wu L X 2011 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, September14-16, 2011 p1
[4] Wang Q, Jiang Q 2010 EURASIP J. Advances. Signal Processing. 483524 1
[5] Frazer L N, Pecholcs P I 1990 J. Acoust. Soc. Am. 88 995
[6] Lee Y P 1998 IEEE Oceans'98 Conference Proceedings Nice, September 28-October 1 1998 p1074
[7] Jesus S M, Porter M B, Y Stéphan, Démoulin X, Rodriguez O C, Ferreira Coelho E M M 2000 IEEE J. Ocean. Eng. 25 337
[8] Touzé G L, Torras J, Nicolas B, Mars J 2008 IEEE Oceans, Quebec City, September 15-18, 2008 p1
[9] Jemmott C W, Culver R L, Bose N K 2008 IEEE Conference on Signal, Systems and Computers, Pacific Grove, October 26-29, 2008 p283
[10] Tao H L, Hickman G, Krolik J L, Kemp M 2007 IEEE Oceans Aberdeen, June 18-21, 2007 p1
[11] Gac L J C, Asch Mark, Stéphan Y, Demoulin X 2003 IEEE J. Ocean. Eng. 28 479
[12] Tiemann C O, Thode A M, Straley J, O'Connell Victoria, Folkert K 2006J. Acoust. Soc. Am. 120 2355
[13] Chen C S, Miller J H, Boudreaux G F, Potty G R, Lazauski C J 2003 IEEE Oceans 2003. proceedings, San Diego, September 22-26, 2003 p2903
[14] Touzé G L, Nicolas B, Lacoume J L, Mars J, Fattaccioli D 2005 IEEE Europe Oceans Brest, June 20-23, 2005 p725
[15] Ioana C, Jarrot A, Gervaise C, Stéphan Y, Quinquis A 2010 IEEE Trans. Signal Processing. 58 4093
[16] Jensen F B, Kuperman W A, Porter M B, Schmidt H 1994 Computational Ocean Acoustics (New York: American Institute of Physics) p337
[17] Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 IEEE Oceans' 2009 Biloxi, October 26-29, 2009 p1
[18] Bonnel J, Gervaise C, Roux P, Nicolas B, Mars J I 2011 J. Acoust. Soc. Am. 130 61
[19] Bonnel J, Gervaise C, Nicolas B, Mars J I 2012 J. Acoust. Soc. Am. 131 119
[20] Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP J. Advances. Signal Processing. 304103 1
[21] Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719
[22] Baraniuk R G, Jones D L 1993 Signal Processing 32 263
[23] Li Z L, Zhang R H 2007 Chin. Phys. Lett. 24 471
[24] Zhang D M, Li Z L, Zhang R H 2005 Acta Acoustica 30 415 (in Chinese) [张德明, 李整林, 张仁和 2005 声学学报 30 415]
[25] Zhang X L, Li Z L, Huang X D 2009 Acta Acoustica 34 54 (in Chinese) [张学磊, 李整林, 黄晓砥 2009 声学学报 30 54]
[26] Nicolas B, Mars J I, Lacoume J L 2006 EURASIP J. Applied Signal Processing 65901 1
[27] Rein van den B, Richard van B 1992 Computer Vision, Graphics, And Image Processing: Graphical Models And Image Processing 54 252
Catalog
Metrics
- Abstract views: 6856
- PDF Downloads: 502
- Cited By: 0