Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Direction-of-arrival estimation based on superdirective multi-pole vector sensor array for low-frequency underwater sound sources

Guo Jun-Yuan Yang Shi-E Piao Sheng-Chun Mo Ya-Xiao

Citation:

Direction-of-arrival estimation based on superdirective multi-pole vector sensor array for low-frequency underwater sound sources

Guo Jun-Yuan, Yang Shi-E, Piao Sheng-Chun, Mo Ya-Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the advances of ship noise reduction technology, the working frequency of the passive sonar must be reduced in order to detect a target. For the conventional array, it requires a large array aperture, comparable to the wavelength, in order to achieve an acceptable angular resolution. Arrays of small physical size with high angular resolution are thus attractive for low-frequency direction-of-arrival estimation of underwater sound source. In this paper, we consider a 33 uniform rectangular array which consists of vector sensors with inter-sensor spacing much smaller than the wavelength. A broadband super-directive beamforming method is proposed for this vector sensor array, which extracts multi-pole modes of different orders from the spatial differentials of the sound field. By normalizing the amplitudes of the multi-pole modes, frequency invariant mode functions can be obtained, which are used to build the desired beam pattern, despite the Rayleigh limit on the achievable angular resolution. Vector sensors are used to replace the pressure difference operation, thus to achieve a desirable beam pattern, the order of spatial differential will be reduced. In other words, for the same array configuration, using the vector sensors provides higher directivity than using the pressure sensor. To concentrate on the sources, and to minimize all hindrances from around circumference, a suitable beam pattern is constructed as an example to analysis. To verify the algorithm, a prototype is built and tested in a water tank. Comparisons are carried out between the actually synthesized beam patterns and the theoretical ones. The experimental results show good agreement with the theoretical results, and that the directivity increases with the multi-pole mode order increasing, at the expense of lower robustness. The performances for different values of ka are also investigated, where k is the wave number and a denotes the inter-sensor spacing. Simulation results show that when the inter-sensor spacing is no more than one-sixth of the incident wave length, the error introduced by the approximations for muti-pole mode extraction can be neglected. It should be noted that this result of the inter-sensor spacing still applicable when considering array gain, showing that the array is insensitive to uncorrelated noise while preserving a relatively high array gain. Finally, the influence of the underwater acoustic waveguide on the array performance is analyzed. Simulations and experimental tests show that due to the small array aperture, the waveguide effects on the array performance are limited.
      Corresponding author: Piao Sheng-Chun, piaoshengchun@hrbeu.edu.cn
    • Funds: Project supported by the Science and Technology Foundation of State Key Laboratory, China (Grant No. 9140C200103120C2001) and the National Natural Science Foundation of China (Grant No. 11234002).
    [1]

    Yang S E 2012 Acoustics 2012 Hong Kong Conference and Exhibition Hong Kong SAR, China, May 13-18, 2012 p336

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (Beijing: Science Press) pp545-549 (in Chinese) [汪徳昭, 尚尔昌 2013 水声学 (北京:科学出版社) 第 545-549 页]

    [3]

    Wang Y, Yang Y X, Ma Y L, He Z Y 2014 J. Acoust. Soc. Am. 136 1712

    [4]

    Parsons A T 1987 J. Acoust. Soc. Am. 82 179

    [5]

    Olson H F 1946 J. Acoust. Soc. Am. 17 192

    [6]

    Uzsoky M, Solymar L 1956 Acta Phys. 6 185

    [7]

    Morris M L, Jensen M A, Wallance J W 2005 IEEE Trans. Antennas Propag. 53 2850

    [8]

    Teutsch H, Kellermann W 2006 J. Acoust. Soc. Am. 120 2724

    [9]

    Teutsch H 2007 Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Berlin: Springer-Verlag) pp33-113

    [10]

    Elko G W 2004 Differential Microphone Arrays (Berlin: Springer-Verlag) pp33-94

    [11]

    Thompson S C 2003 Hearing J. 56 14

    [12]

    Chung K, Zeng F G, Acker K N 2006 J. Acoust. Soc. Am. 120 2216

    [13]

    Benesty J, Souden M, Huang Yiteng 2012 IEEE Trans. Audio Speech Lang. Process. 20 699

    [14]

    Benesty J, Chen J 2012 Study and Design of Differential Microphone Arrays (Berlin: Springer-Verlag) pp41-94

    [15]

    Griffiths J W R, Griffiths H D, Cowan C F N, Eiges R, Rafik T 1994 Oceans 94/OSATES Conference on Oceans Engineering for Todays Technology and Tomorrows Preservation Brest, France, Sep. 13-16, 1994 p223

    [16]

    Meyer J 2001 J. Acoust. Soc. Am. 109 185

    [17]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [18]

    Elko G W 1999 J. Acoust. Soc. Am. 105 1098

    [19]

    Buck M 2002 Eur. T. Telecommun. 13 115

    [20]

    Abhayapala T D, Gupta A 2010 J. Acoust. Soc. Am. 127 EL227

    [21]

    Sena E D, Hacihabiboglu H, Cvetkovic Z 2012 IEEE Trans. Audio Speech Lang. Process. 20 162

    [22]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [23]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [24]

    Shi J, Yang D S, Shi S G, Zhu Z R 2016 Acta Phys. Sin. 65 124302 (in Chinese) [时洁, 杨德森, 时胜国, 朱中锐 2016 65 024302]

    [25]

    Sun G Q, Li Q H 2004 Acta Acust. 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 29 491]

    [26]

    Guo J Y, Yang S E, Piao S C 2015 170th Metting Acoustical Society of America Jacksonville, Florida, United States, Nov. 2-6, 2015 p1737

    [27]

    Zou N, Nehorai A 2009 IEEE Trans. Signal Process. 57 3041

    [28]

    Gur B 2014 J. Acoust. Soc. Am. 135 3463

    [29]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [30]

    Smith K B, Vincent A, Leijen V 2007 J. Acoust. Soc. Am. 122 370

  • [1]

    Yang S E 2012 Acoustics 2012 Hong Kong Conference and Exhibition Hong Kong SAR, China, May 13-18, 2012 p336

    [2]

    Wang D Z, Shang E C 2013 Underwater Acoustics (Beijing: Science Press) pp545-549 (in Chinese) [汪徳昭, 尚尔昌 2013 水声学 (北京:科学出版社) 第 545-549 页]

    [3]

    Wang Y, Yang Y X, Ma Y L, He Z Y 2014 J. Acoust. Soc. Am. 136 1712

    [4]

    Parsons A T 1987 J. Acoust. Soc. Am. 82 179

    [5]

    Olson H F 1946 J. Acoust. Soc. Am. 17 192

    [6]

    Uzsoky M, Solymar L 1956 Acta Phys. 6 185

    [7]

    Morris M L, Jensen M A, Wallance J W 2005 IEEE Trans. Antennas Propag. 53 2850

    [8]

    Teutsch H, Kellermann W 2006 J. Acoust. Soc. Am. 120 2724

    [9]

    Teutsch H 2007 Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Berlin: Springer-Verlag) pp33-113

    [10]

    Elko G W 2004 Differential Microphone Arrays (Berlin: Springer-Verlag) pp33-94

    [11]

    Thompson S C 2003 Hearing J. 56 14

    [12]

    Chung K, Zeng F G, Acker K N 2006 J. Acoust. Soc. Am. 120 2216

    [13]

    Benesty J, Souden M, Huang Yiteng 2012 IEEE Trans. Audio Speech Lang. Process. 20 699

    [14]

    Benesty J, Chen J 2012 Study and Design of Differential Microphone Arrays (Berlin: Springer-Verlag) pp41-94

    [15]

    Griffiths J W R, Griffiths H D, Cowan C F N, Eiges R, Rafik T 1994 Oceans 94/OSATES Conference on Oceans Engineering for Todays Technology and Tomorrows Preservation Brest, France, Sep. 13-16, 1994 p223

    [16]

    Meyer J 2001 J. Acoust. Soc. Am. 109 185

    [17]

    Ma Y L, Yang Y X, He Z Y, Yang K D, Sun C, Wang Y M 2013 IEEE Trans. Ind. Electron. 60 203

    [18]

    Elko G W 1999 J. Acoust. Soc. Am. 105 1098

    [19]

    Buck M 2002 Eur. T. Telecommun. 13 115

    [20]

    Abhayapala T D, Gupta A 2010 J. Acoust. Soc. Am. 127 EL227

    [21]

    Sena E D, Hacihabiboglu H, Cvetkovic Z 2012 IEEE Trans. Audio Speech Lang. Process. 20 162

    [22]

    Zhang T W, Yang K D, Ma Y L 2010 Chin. Phys. B 19 124301

    [23]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 124302 (in Chinese) [时洁, 杨德森, 时胜国 2012 61 124302]

    [24]

    Shi J, Yang D S, Shi S G, Zhu Z R 2016 Acta Phys. Sin. 65 124302 (in Chinese) [时洁, 杨德森, 时胜国, 朱中锐 2016 65 024302]

    [25]

    Sun G Q, Li Q H 2004 Acta Acust. 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 29 491]

    [26]

    Guo J Y, Yang S E, Piao S C 2015 170th Metting Acoustical Society of America Jacksonville, Florida, United States, Nov. 2-6, 2015 p1737

    [27]

    Zou N, Nehorai A 2009 IEEE Trans. Signal Process. 57 3041

    [28]

    Gur B 2014 J. Acoust. Soc. Am. 135 3463

    [29]

    Nehorai A, Paldi E 1994 IEEE Trans. Signal Process. 42 2481

    [30]

    Smith K B, Vincent A, Leijen V 2007 J. Acoust. Soc. Am. 122 370

  • [1] Zhou Yu-Yuan, Sun Chao, Xie Lei, Liu Zong-Wei. A method of estimating depth of moving sound source in shallow sea based on incoherently matched beam-wavenumber. Acta Physica Sinica, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [2] Wen Jia-Mei, Bo Wen-Bo, Wen Xue-Kun, Dai Chao-Qing. Multipole vector solitons in coupled nonlinear Schrödinger equation with saturable nonlinearity. Acta Physica Sinica, 2023, 72(10): 100502. doi: 10.7498/aps.72.20222284
    [3] Duan Yun-Da, Hu Heng-Shan. Interface reflection wave of axisymmetric directional spherical-wave. Acta Physica Sinica, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [4] Cheng Wei, Teng Peng-Xiao, Lü Jun, Ji Pei-Feng, Dai Yi-Jing. Energy estimation of explosion sound source based on atmospheric sound propagation theory. Acta Physica Sinica, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [5] Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing. Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves. Acta Physica Sinica, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [6] Ge Yi-Fan, Wu Yi-Ping, Zang Xiao-Fei, Yuan Ying-Hao, Chen Lin. Interaction between spoof localized surface plasmon and terahertz vortex beam. Acta Physica Sinica, 2020, 69(18): 184203. doi: 10.7498/aps.69.20200695
    [7] Meng Rui-Jie, Zhou Shi-Hong, Li Feng-Hua, Qi Yu-Bo. Identification of interference normal mode pairs of low frequency sound in shallow water. Acta Physica Sinica, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [8] Li Xiao-Man, Zhang Ming-Hui, Zhang Hai-Gang, Piao Sheng-Chun, Liu Ya-Qin, Zhou Jian-Bo. A passive range method of broadband impulse source based on matched-mode processing. Acta Physica Sinica, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [9] Li Peng, Zhang Xin-Hua, Fu Liu-Fang, Zeng Xiang-Xu. A modal domain beamforming approach for depth estimation by a horizontal array. Acta Physica Sinica, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [10] Guo Xiao-Le, Yang Kun-De, Ma Yuan-Liang, Yang Qiu-Long. A source range and depth estimation method based on modal dedispersion transform. Acta Physica Sinica, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [11] Li Ming-Yang, Sun Chao, Shao Xuan. Effects of incomplete modal sampling on the underwater target detetion and performance improvement method. Acta Physica Sinica, 2014, 63(20): 204302. doi: 10.7498/aps.63.204302
    [12] Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Zhang Bo, Ren Yun. Modal characteristic frequency in a range-dependent shallow-water waveguide and its application to passive source range estimation. Acta Physica Sinica, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [13] Liang Guo-Long, Ma Wei, Fan Zhan, Wang Yi-Lin. A high resolution robust localization approach of high speed target based on vector sonar. Acta Physica Sinica, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [14] Shi Jie, Yang De-Sen, Shi Sheng-Guo. Experimental research on cylindrical focused beamforming localization method of moving sound sources based on vector sensor array. Acta Physica Sinica, 2012, 61(12): 124302. doi: 10.7498/aps.61.124302
    [15] Lü Jun, Zhao Zheng-Yu, Zhou Chen, Zhang Yuan-Nong. Effect of finite-amplitude acoustic wave nonlinear interaction on farfield directivity of sound source. Acta Physica Sinica, 2011, 60(8): 084301. doi: 10.7498/aps.60.084301
    [16] Hou Wang-Bin, Liu Tian-Qi, Li Xing-Yuan. Prony analysis of low frequency oscillations based on empirical mode decomposition filtering. Acta Physica Sinica, 2010, 59(5): 3531-3537. doi: 10.7498/aps.59.3531
    [17] Guan Wei, Hu Heng-Shan, Chu Zhao-Tan. Formulation of the acoustically-induced electromagnetic field in a porous formation in terms of Hertz vectors and simulation of the borehole electromagnetic field excited by an acoustic multipole source. Acta Physica Sinica, 2006, 55(1): 267-274. doi: 10.7498/aps.55.267
    [18] XING DING-YU, YUAN JIAN. MEAN-SQUARE DISPLACEMENTS OF ATOMS IN A SEMI-INFINITE SUPERLATTICE. Acta Physica Sinica, 1986, 35(6): 812-818. doi: 10.7498/aps.35.812
    [19] Zhang Ren-he, Zhu Bai-xian. NORMAL-MODE SOUND FIELD OF DIRECTIONAL RADIATOR. Acta Physica Sinica, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] YAN REN-BO. DIRECTIVITY PATTERNS OF ANGLE PROBES FOR ULTRASONIC BULK WAVES AND SURFACE WAVES. Acta Physica Sinica, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
Metrics
  • Abstract views:  6442
  • PDF Downloads:  353
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2016
  • Accepted Date:  22 April 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map