Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection

Zhang Kai Zhong Jia-Yong Pei Xiao-Xing Li Yu-Tong Sakawa Youichi Wei Hui-Gang Yuan Da-Wei Li Fang Han Bo Wang Chen He Hao Yin Chuan-Lei Liao Guo-Qian Fang Yuan Yang Su Yuan Xiao-Hui Liang Gui-Yun Wang Fei-Lu Zhu Jian-Qiang Ding Yong-Kun Zhang Jie Zhao Gang

Citation:

Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection

Zhang Kai, Zhong Jia-Yong, Pei Xiao-Xing, Li Yu-Tong, Sakawa Youichi, Wei Hui-Gang, Yuan Da-Wei, Li Fang, Han Bo, Wang Chen, He Hao, Yin Chuan-Lei, Liao Guo-Qian, Fang Yuan, Yang Su, Yuan Xiao-Hui, Liang Gui-Yun, Wang Fei-Lu, Zhu Jian-Qiang, Ding Yong-Kun, Zhang Jie, Zhao Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic reconnection (MR) is a universal physical process in plasma, in which the stored magnetic energy is converted into high-velocity flows and energetic particles. It is believed that MR plays an important role in many plasma phenomena such as solar fare, gamma-ray burst, fusion plasma instabilities, etc.. The process of MR has been studied in detail by dedicated magnetic-driven experiments. Here, we report the measurements of magnetic reconnection driven by Shenguang II lasers and Gekko XVII lasers. A collimated plasma jet is observed along the direction perpendicular to the reconnection plane with the optical probing. The present jet is very different from traditional magnetic reconnection outflows as known in the two-dimensional reconnection plane. In our experiment, by changing the delay of optical probing beam, we measure the temporal evolution of jet from 0.5 ns to 2.5 ns and its velocity around 400 km/s is deduced. Highcollimated jet is also confirmed by its strong X-ray radiation recorded by an X-ray pinhole camera. With the help of optical interferograms we calculate the jet configuration and its density distribution by using Abel inverting technique. A magnetic spectrometer with an energy range from hundred eV up to one MeV is installed in front of the jet, in the direction perpendicular to the reconnection plane, to measure the accelerated electrons. Two cases are considered for checking the acceleration of electrons. The results show that more accelerated electrons can be found in the reconnection case than in the case without reconnection. We propose that the formation and collimation of the plasma jet, and the electron energy spectrum may be possible directly influenced by the reconnection electric field, which is very important for understanding the energy conversion in the process of MR and establishment of the theoretical model. Finally the electron energy spectra of three different materials Al, Ta and Au are also shown in our work. The results indicate that the higher atomic number material can obtain a better signal-noise ratio, which provides some helpful references for our future work.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01503), the National Natural Science Foundation of China (Grant Nos. 11205015, 11273033, 11135012), and the Beijing Nova Program, China (Grant No. Z131109000413050).
    [1]

    Yamada M, Kulsrud R, Ji H T 2010 Rev. Mod. Phys. 82 603

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [3]

    Yamada M 2007 Phys. Plasmas 14 058102

    [4]

    Parker E N 1957 J. Geophys. Res. 62 509

    [5]

    Sitnov M I, Sharma A S, Papadopoulos K, Vassiliadis D 2001 Phys. Rev. E 65 016116

    [6]

    Nishizuka N, Hayashi Y, Tanabe H, Kuwahata A, Kaminou Y, Ono Y, Inomoto M, Shimizu T 2012 Astrophys. J. 756 152

    [7]

    Jing J, Yurchyshyn Vasyl B, Yang G, Xu Y, Wang H M 2004 Astrophys. J. 614 1054

    [8]

    Lin R P, Krucker S, Hurford G J, Smith D M, Hudson H S, Holman G D, Schwartz R A, Dennis B R, Share G H, Murphy R J, Emslie A G, Johns-Krull C, Vilmer N 2003 Astrophys. J. 595 L69

    [9]

    Yamada M, Yoo J, Jara-Almonte J, Ji H T, Kulsrud R M, Myers C E 2014 Nat. Comm. 5 4774

    [10]

    Xia J F, Zhang J 2001 Physics 30 210 (in Chinese) [夏江帆, 张杰 2001 物理 30 210]

    [11]

    Begelman M C, Blandford R D, Rees M J 1984 Rev. Mod. Phys. 56 255

    [12]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [13]

    Xia J F, Zhang J 2001 Physics 30 545 (in Chinese) [夏江帆, 张杰 2001 物理 30 545]

    [14]

    Haines M G 1986 Can. J. Phys. 64 912

    [15]

    Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A, Dawson M J 1971 Phys. Rev. Lett. 26 1012

    [16]

    Haines M G 1997 Phys. Rev. Lett. 78 254

    [17]

    Li C K, Se'guin F H, Frenje J A, Rygg J R, Petrasso R D 2006 Phys. Rev. Lett. 97 135003

    [18]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2008 Phys. Plasmas 15 092701

    [19]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [20]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese) [裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 63 145201]

    [21]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

    [22]

    Cai D F, Gu Y Q, Zheng Z J, Zhou W M, Jiao C Y, Wen T S, Chunyu S T 2007 Acta Phys. Sin. 56 346 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰 2007 56 346]

    [23]

    Cai D F, Gu Y Q, Zheng Z J, Yang X D, Wen T S, Chunyu S T 2003 High Power Laser and Particle Beams 15 575 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 杨向东, 温天舒, 淳于书泰 2003 强激光与粒子束 15 575]

  • [1]

    Yamada M, Kulsrud R, Ji H T 2010 Rev. Mod. Phys. 82 603

    [2]

    Zhong J Y, Li Y T, Wang X G, Wang J Q, Dong Q L, Xiao C J, Wang S J, Liu X, Zhang L, An L, Wang F L, Zhu J Q, Gu Y, He X T, Zhao G, Zhang J 2010 Nat. Phys. 6 984

    [3]

    Yamada M 2007 Phys. Plasmas 14 058102

    [4]

    Parker E N 1957 J. Geophys. Res. 62 509

    [5]

    Sitnov M I, Sharma A S, Papadopoulos K, Vassiliadis D 2001 Phys. Rev. E 65 016116

    [6]

    Nishizuka N, Hayashi Y, Tanabe H, Kuwahata A, Kaminou Y, Ono Y, Inomoto M, Shimizu T 2012 Astrophys. J. 756 152

    [7]

    Jing J, Yurchyshyn Vasyl B, Yang G, Xu Y, Wang H M 2004 Astrophys. J. 614 1054

    [8]

    Lin R P, Krucker S, Hurford G J, Smith D M, Hudson H S, Holman G D, Schwartz R A, Dennis B R, Share G H, Murphy R J, Emslie A G, Johns-Krull C, Vilmer N 2003 Astrophys. J. 595 L69

    [9]

    Yamada M, Yoo J, Jara-Almonte J, Ji H T, Kulsrud R M, Myers C E 2014 Nat. Comm. 5 4774

    [10]

    Xia J F, Zhang J 2001 Physics 30 210 (in Chinese) [夏江帆, 张杰 2001 物理 30 210]

    [11]

    Begelman M C, Blandford R D, Rees M J 1984 Rev. Mod. Phys. 56 255

    [12]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [13]

    Xia J F, Zhang J 2001 Physics 30 545 (in Chinese) [夏江帆, 张杰 2001 物理 30 545]

    [14]

    Haines M G 1986 Can. J. Phys. 64 912

    [15]

    Stamper J A, Papadopoulos K, Sudan R N, Dean S O, McLean E A, Dawson M J 1971 Phys. Rev. Lett. 26 1012

    [16]

    Haines M G 1997 Phys. Rev. Lett. 78 254

    [17]

    Li C K, Se'guin F H, Frenje J A, Rygg J R, Petrasso R D 2006 Phys. Rev. Lett. 97 135003

    [18]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2008 Phys. Plasmas 15 092701

    [19]

    Nilson P M, Willingale L, Kaluza M C, Kamperidis C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E, Krushelnick K 2006 Phys. Rev. Lett. 97 255001

    [20]

    Pei X X, Zhong J Y, Zhang K, Zheng W D, Liang G Y, Wang F L, Li Y T, Zhao G 2014 Acta Phys. Sin. 63 145201 (in Chinese) [裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚 2014 63 145201]

    [21]

    Hipp M, Woisetschlager J, Reiterer P, Neger T 2004 Measurement 36 53

    [22]

    Cai D F, Gu Y Q, Zheng Z J, Zhou W M, Jiao C Y, Wen T S, Chunyu S T 2007 Acta Phys. Sin. 56 346 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰 2007 56 346]

    [23]

    Cai D F, Gu Y Q, Zheng Z J, Yang X D, Wen T S, Chunyu S T 2003 High Power Laser and Particle Beams 15 575 (in Chinese) [蔡达峰, 谷渝秋, 郑志坚, 杨向东, 温天舒, 淳于书泰 2003 强激光与粒子束 15 575]

  • [1] Zhao Na, Ou-yang Jian-Ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu. Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels. Acta Physica Sinica, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] Zhu Han-Chen, Zhou Chu-Liang, Li Xiao-Feng, Tian Ye, Li Ru-Xin. Over-30-GeV intense laser phase-locked direct electron acceleration. Acta Physica Sinica, 2024, 73(19): 195201. doi: 10.7498/aps.73.20240652
    [3] Yu Jia-Cheng, Zhong Jia-Yong, An Wei-Ming, Ping Yong-Li. Potential distribution behind target in intense and short pulsed laser-driven magnetic reconnection. Acta Physica Sinica, 2021, 70(6): 065201. doi: 10.7498/aps.70.20201339
    [4] Wang Lin, Wei Lai, Wang Zheng-Xiong. Effect of out-of-plane driving flow on formation of plasmoids in current sheet system. Acta Physica Sinica, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [5] Tan Fang, Zhang Xiao-Hui, Zhu Bin, Li Gang, Wu Yu-Chi, Yu Ming-Hai, Yang Yue, Yan Yong-Hong, Yang Jing, Fan Wei, Dong Ke-Gong, Lu Feng, Gu Yu-Qiu. Mixed injection mechanism assisted cascaded laser wakefield accelerator. Acta Physica Sinica, 2019, 68(17): 175201. doi: 10.7498/aps.68.20190484
    [6] Yuan Xiao-Xia, Zhong Jia-Yong. Simulations for two colliding plasma bubbles embedded into an external magnetic field. Acta Physica Sinica, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [7] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] Zhang Feng, Huang Shuo, Li Xiao-Feng, Yu Qin, Gu Yan-Jun, Kong Qing. Effect of self-injected electrons driven by paralleled drive electron bunches. Acta Physica Sinica, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [9] Mu Jie, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical studies on intense laser-generated relativistic high-energy electrons via a thin cone target. Acta Physica Sinica, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [10] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [11] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [12] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [13] Kan Peng-Zhi, Zhao Su-Ling, Xu Zheng, Kong Chao, Wang Da-Wei, Yan Yue. The applications of ZnO nanorods in poly [2-methoxy-5-(2-ethyl-hexyloxy)-1, 4-phenylene vinylene]solid state cathodoluminescence device. Acta Physica Sinica, 2010, 59(1): 616-619. doi: 10.7498/aps.59.616
    [14] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [15] Yang Bo. Entropy of the scalar field in general accelerating non-stationary black holes with electric charge and magnetic charge. Acta Physica Sinica, 2008, 57(4): 2614-2620. doi: 10.7498/aps.57.2614
    [16] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [17] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [18] Tian You-Wei, Yu Wei, Lu Pei-Xiang, He Feng, Ma Fa-Jun, Xu Han, Jing Guo-Liang, Qian Lie-Jia. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [19] He Feng, Yu Wei, Lu Pei-Xiang, Yuan Xiao, Liu Jing-Ru. Electron acceleration by a tightly focused femtosecond laser beam in vacuum. Acta Physica Sinica, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [20] WANG JIA-XIANG, HO YU-KUN, FENG LIANG. ELECTRON ACCELERATION IN THE CONE-SHAPED LASER FIELD. Acta Physica Sinica, 1996, 45(8): 1264-1274. doi: 10.7498/aps.45.1264
Metrics
  • Abstract views:  6611
  • PDF Downloads:  275
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2015
  • Accepted Date:  14 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map