搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合注入机制的级联尾场电子加速

谭放 张晓辉 朱斌 李纲 吴玉迟 于明海 杨月 闫永宏 杨靖 范伟 董克攻 卢峰 谷渝秋

引用本文:
Citation:

基于混合注入机制的级联尾场电子加速

谭放, 张晓辉, 朱斌, 李纲, 吴玉迟, 于明海, 杨月, 闫永宏, 杨靖, 范伟, 董克攻, 卢峰, 谷渝秋

Mixed injection mechanism assisted cascaded laser wakefield accelerator

Tan Fang, Zhang Xiao-Hui, Zhu Bin, Li Gang, Wu Yu-Chi, Yu Ming-Hai, Yang Yue, Yan Yong-Hong, Yang Jing, Fan Wei, Dong Ke-Gong, Lu Feng, Gu Yu-Qiu
PDF
HTML
导出引用
  • 激光尾场电子加速装置中, 为了获得可稳定重复产生的高质量单能尾场电子, 电子的可控注入是其中的关键. 基于自主设计的级联加速喷气靶, 研究离化注入、冲击波前沿注入等可控注入技术及其结合对尾场电子产生阈值、电子能谱及其稳定性的影响. 研究结果显示, 离化注入机制、冲击波前沿注入机制以及级联加速喷嘴的结合, 可以使尾场电子的注入阈值大幅度降低, 且电子的离化注入区域被限制于冲击波前沿处, 最终大幅度降低电子束的绝对能散、提高稳定性. 在最优化的条件下, 可以获得最小发散角为(3.6 × 3.8) mrad, 平均中心能量为(63.24 ± 6.12) MeV, 平均能散为(13.0 ± 3.9) MeV、平均电量为(5.99 ± 3.10) pC的重频单能尾场电子.
    Femtosecond electron bunches can be produced by laser plasma wakefield accelerators, with energy tunable from tens of MeV to a few GeV. In order to produce stable mono-energetic electron bunches, a critical issue is to control the injection of electron into the wakefield. The ionization injection is one of the most effective methods of controlling the injection, which is usually a continuous process. So, the electron bunches produced through ionization injection usually possess large energy spread. In order to optimize the ionization injection technique and produce stable monoenergetic wakefield electron beams, experimental studies are conducted on our 45 TW laser facility. In this work, a mixed injection mechanism assisted cascaded laser wakefield accelerator is presented. Based on a double-nozzle cascaded accelerator, the influences of ionization injection, shock wave front injection and their combination are experimentally studied. The results show that the lower threshold of the injection can be substantially reduced. The ionization injection is restricted within the shock wave front. As a result, mono-energetic electron bunches with reduced absolute energy spread can be stably produced. Under the most optimal conditions, the central energy and energy spread are (63.24 ± 6.12) MeV and (13.0 ± 3.9) MeV. The charge quantity of the electron bunches is (5.99 ± 3.10) pC. The minimum emitting anglular spread is (3.6 × 3.8) mrad.
      通信作者: 谷渝秋, yqgu@caep.cn
    • 基金项目: 中国工程物理研究院院长基金(批准号: 2014-01-17)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1630246)、国防基础科研核基础科学挑战专题高能量密度科学领域(批准号: JCKY2016212A505)和国家重点研发计划(批准号: 016YFA0401100)资助的课题.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported the Presidential Foundation of the China Academy of Engineering Physics (Grant No. 2014-1-017), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630246), the Science Challenge Project, China (Grant No. JCKY2016212A505), and the National Key Research and Development Program of China (Grant No. 016YFA0401100).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    徐慧, 盛政明, 张杰 2007 56 968Google Scholar

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar

    [6]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [10]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [11]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar

    [12]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28

    [13]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [14]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [15]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [16]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [17]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [18]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [19]

    Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar

    [20]

    Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [21]

    Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar

    [22]

    Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar

    [23]

    Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar

    [24]

    Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar

    [25]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [26]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [27]

    Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar

    [28]

    Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar

    [29]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [30]

    McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar

    [31]

    Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar

    [32]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [33]

    Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar

    [34]

    Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar

    [35]

    Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004

    [36]

    Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar

    [37]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [38]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [39]

    Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar

    [40]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar

    [41]

    Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar

    [42]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [43]

    Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar

    [44]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [45]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [46]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [47]

    Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar

    [48]

    董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 596 8733Google Scholar

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar

    [49]

    Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar

    [50]

    Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar

  • 图 1   (a) 喷嘴设计及实验排布; (b) 气体密度分布侧视二维图; (c) 2 mm高处气体密度对应电子密度的一维分布

    Fig. 1.   (a) The gas jet designment and the experimental layout; (b) the side view of the gas density distribution; (c) the one dimensional electron density at a height of 2 mm from the gas jet.

    图 2  电子束斑 (上)单喷嘴、纯He气结果; (下)双喷嘴无刀边、混合气结果

    Fig. 2.  Electron angular distribution for ((a)−(e)) single stage gas jet and ((f)−(j)) dual-stage gas jet.

    图 3  电子束斑 (a)−(e) He气结果; (f)−(j) He气混入2.5% N2气结果

    Fig. 3.  The electron angular distribution for (a)−(e) pure He and (f)−(j) the mixed gas of He with 2.5% N2.

    图 4  喷气气压650 kPa时发射角最小的电子束斑

    Fig. 4.  The spot size for shot 0562 when the jet pressure is 650 kPa.

    图 5  喷气气压650 kPa时连续打靶5发, 磁谱仪测量到的电子能谱

    Fig. 5.  Electron energy spectra for continuous 5 shots under jet pressure of 650 kPa.

    图 6  等离子体中电子在纵向相空间(x-γVx)的分布

    Fig. 6.  The Distribution of electrons in longitudinal phase space (x-γVx).

    表 1  喷气气压650 kPa时连续打靶6发得到的电子束斑参数, θx,, θy为出射方向, σx, σy为角分布光斑的半高全宽直径

    Table 1.  The emitting direction θx, θy and the FWHM angular spread σx, σy of the electron angular distribution for continuous 6 shots under jet pressure of 650 kPa.

    发次号θx/mradθy/mradσx/mradσy/mrad
    558–25.528.98.55.6
    559–22.127.35.05.6
    560–23.523.36.24.8
    561–19.023.36.55.1
    562–18.124.23.83.6
    563–19.719.46.44.4
    下载: 导出CSV

    表 2  喷气气压650 kPa时连续打靶5发得到的电子能谱参数

    Table 2.  The central energy, charge and energy spread of the electrons for continuous 5 shots when the jet pressure is 650 kPa.

    发次号中心能量/MeV电量/pC能散FWHM/MeV
    57066.76.510
    57166.19.417
    57258.22.06.9
    57354.29.214.3
    574712.8616.6
    下载: 导出CSV
    Baidu
  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    徐慧, 盛政明, 张杰 2007 56 968Google Scholar

    Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar

    [3]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [4]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar

    [5]

    Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar

    [6]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [7]

    Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [8]

    Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [9]

    Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [10]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [11]

    Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar

    [12]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28

    [13]

    Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar

    [14]

    Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar

    [15]

    Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar

    [16]

    Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar

    [17]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar

    [18]

    Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar

    [19]

    Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar

    [20]

    Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar

    [21]

    Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar

    [22]

    Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar

    [23]

    Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar

    [24]

    Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar

    [25]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar

    [26]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [27]

    Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar

    [28]

    Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar

    [29]

    Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar

    [30]

    McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar

    [31]

    Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar

    [32]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar

    [33]

    Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar

    [34]

    Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar

    [35]

    Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004

    [36]

    Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar

    [37]

    Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar

    [38]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [39]

    Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar

    [40]

    Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar

    [41]

    Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar

    [42]

    Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar

    [43]

    Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar

    [44]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar

    [45]

    Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar

    [46]

    Leemans W, Esarey E 2009 Phys. Today 62 44

    [47]

    Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar

    [48]

    董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 596 8733Google Scholar

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar

    [49]

    Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar

    [50]

    Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar

  • [1] 赵月琪, 崔佩霖, 李建龙, 李博原, 祝昕哲, 陈民, 刘振宇. 用于激光尾波加速的弯曲毛细管内气流运动的模拟研究.  , 2023, 72(18): 184701. doi: 10.7498/aps.72.20230893
    [2] 张晓辉, 吴玉迟, 朱斌, 王少义, 闫永宏, 谭放, 于明海, 杨月, 李纲, 张杰, 温家星, 周维民, 粟敬钦, 谷渝秋. 一种低喷气量微气室喷嘴在激光尾场加速中的应用.  , 2023, 72(3): 035202. doi: 10.7498/aps.72.20221868
    [3] 祝昕哲, 李博原, 刘峰, 李建龙, 毕择武, 鲁林, 远晓辉, 闫文超, 陈民, 陈黎明, 盛政明, 张杰. 面向激光等离子体尾波加速的毛细管放电实验研究.  , 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] 赵良超. SESRI 300 MeV同步加速器注入线的传输效率与接受效率.  , 2022, 71(11): 112901. doi: 10.7498/aps.71.20212112
    [5] 叶翰晟, 谷渝秋, 黄文会, 吴玉迟, 谭放, 张晓辉, 王少义. 基于激光尾场加速的自反射式全光汤姆孙散射的参数优化.  , 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [6] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器.  , 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [7] 祝昕哲, 刘维媛, 陈民. 锐真空-等离子体边界倾角对激光尾波场加速中电子注入的影响.  , 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [8] 王通, 王晓方. 激光尾场加速电子的密度梯度注入的解析处理.  , 2016, 65(4): 044102. doi: 10.7498/aps.65.044102
    [9] 张枫, 黄硕, 李晓锋, 余芹, 顾彦珺, 孔青. 双束平行入射电子束引导的自注入电子加速效果的研究.  , 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [10] 徐妙华, 李玉同, 刘峰, 张翼, 林晓宣, 王首钧, 孟立民, 王兆华, 郑君, 盛政明, 魏志义, 李英骏, 张杰. 利用激光离焦的方法优化超强激光驱动的质子加速.  , 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [11] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验.  , 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [12] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究.  , 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [13] 王 剑, 谷渝秋, 蔡达峰, 焦春晔, 吴玉迟, 何颖玲, 滕 建, 杨向东, 王 磊, 赵宗清. 激光尾波场中光子加速研究.  , 2008, 57(10): 6471-6475. doi: 10.7498/aps.57.6471
    [14] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速.  , 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [15] 徐 涵, 常文蔚, 银 燕, 卓红斌. 三角激光脉冲尾波加速粒子模拟.  , 2004, 53(3): 818-823. doi: 10.7498/aps.53.818
    [16] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵.  , 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [17] 王加祥, 霍裕昆, 冯量. 锥形光场对电子的加速效应.  , 1996, 45(8): 1264-1274. doi: 10.7498/aps.45.1264
    [18] 李毅. 热等离子体中的尾波加速.  , 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [19] 潘正瑛, 李融武. 低能原子簇轰击金属簿膜引起的级联碰撞(Ⅱ)——注入簇原子的加速.  , 1994, 43(10): 1726-1733. doi: 10.7498/aps.43.1726
    [20] 王渭源, 夏冠群, 卢建国, 邵永富, 乔墉. 掺Cr半绝缘GaAs中Si离子注入的载流子分布尾研究.  , 1985, 34(3): 402-407. doi: 10.7498/aps.34.402
计量
  • 文章访问数:  6664
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 修回日期:  2019-06-20
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回
Baidu
map