Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses

Yin Chuan-Lei Wang Wei-Min Liao Guo-Qian Li Meng-Chao Li Yu-Tong Zhang Jie

Citation:

Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses

Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The earlier research showed that circularly polarized laser pulses with peak intensities in a range of 1022-1025 W/cm2 can directly accelerate and generate GeV-TeV monoenergetic electron beams with a linear energy scaling with the laser intensity. To obtain higher energy electron beams, a scheme is proposed to use an electron beam with an initial energy E0 along the laser propagation direction. This scheme can overcome the linear energy scaling with E0=0 obtained previously and enhance the beam energy by E0 folds. This is because an electron beam with an initial energy can move with the laser pulse together and therefore obtain a longer acceleration distance. Two-dimensional particle-in-cell simulation shows that this scheme is effective only for the electron beams initially with low energy on the order of MeV. With overhigh energy, electrons will miss the optimum acceleration field because the electron acceleration distance is much longer than the Rayleigh distance and the laser intensity is significantly attenuated.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2013CBA01501) and the National Natural Science Foundation of China (Grant Nos. 11105217, 11375261, 11375262).
    [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1]

    DesRosiers C, Moskvin V, Bielajew A F, Papiez L 2000 Phys. Med. Biol. 45 1781

    [2]

    Glinec Y Y, Faure J, Malka V V, Fuchs T, Szymanowski H, Oelfke U 2006 Med. Phys. 33 155

    [3]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F, Mercier B, Malka V 2005 Phys. Rev. Lett. 94 025003

    [4]

    Kneip S, McGuffey C, Martins J L, Martins S F, Bellei C, Chvykov V, Dollar F, Fonseca R, Huntington C, Kalintchenko G, Maksimchuk A, Mangles S P D, Matsuoka T, Nagel S R, Palmer C A J, Schreiber J, Phuoc K T, Thomas A G R, Yanovsky V, Silva L O, Krushelnick K, Najmudin Z 2010 Nature Phys. 6 980

    [5]

    Cipiccia S, Islam M R, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S M, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [6]

    Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nature Photon. 6 308

    [7]

    Chen L M, Yan W C, Li D Z, Hu Z D, Zhang L, Wang W M, Hafz N A M, Mao J Y, Huang K, Ma Y, Zhao J R, Ma J L, Li Y T, Lu X, Sheng Z M, Wei Z Y, Gao J, Zhang J 2013 Sci. Report 3 1912

    [8]

    Tan F, Zhu B, Han D, Xin J T, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H 2014 Chin. Phys. B 23 034104

    [9]

    Leemans W P, Geddes C G R, Faure J, Toth C, van Tilborg J, Schroeder C B, Esarey E, Fubiani G, Auerbach D, Marcelis B, Carnahan M A, Kaindl R A, Byrd J, Martin M C 2003 Phys. Rev. Lett. 91 074802

    [10]

    Shen Y, Watanabe T, Arena D A, Kao C C, Murphy J B, Tsang T Y, Wang X J, Carr G L 2007 Phys. Rev. Lett. 99 043901

    [11]

    Wang W M, Kawata S, Sheng Z M, Li Y T, Chen L M, Qian L J, Zhang J 2011 Opt. Lett. 36 2608

    [12]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2014 Phys. Rev. A 90 023808

    [13]

    Pukhov A, Meyer-ter-vehn J 2002 Appl. Phys. B 74 355

    [14]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [15]

    Geddes C, Toth C, van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538

    [16]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordi-enko S, Lefebvre E, Rousseau J, Burgy F, Malka V 2004 Nature 431 541

    [17]

    Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002

    [18]

    Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A, Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301

    [19]

    Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Appl. Phys. Lett. 93 201502

    [21]

    Hafz N A M, Jeong T M, Choi I W, Lee S K, Pae K H, Kulagin V V, Sung J H, Yu T J, Hong K H, Hosokai T, Cary J R, Ko D K, Lee J 2008 Nature Photon. 2 571

    [22]

    Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001

    [23]

    Leemans W P, Nagler B, Gonsalves A J, Toth C, Nakamura K, Geddes C G R, Esarey E, Schroeder C B, Hooker S M 2006 Nature Phys. 2 696

    [24]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Toth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002

    [25]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nature Commun. 4 1988

    [26]

    Wang W M, Sheng Z M, Zeng M, Liu Y, Hu Z D, Kawata S, Zheng C Y, Mori W B, ChenL M, Li Y T, Zhang J 2012 Appl. Phys. Lett. 101 184104

    [27]

    Wang W M, Sheng Z M, Li Y T, Chen L M, Kawata S, Zhang J 2010 Phys. Rev. ST Accel. Beams 13 071301

    [28]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714

    [29]

    Dittrich W, Gies H 2000 Probing the Quantum Vacuum (Berlin: Springer-Verlag)

    [30]

    Sun G Z, Ott E, Lee Y C, Guzdar P 1987 Phys. Fluids 30 526

    [31]

    Borisov A B, Borovskiy A V, Shiryaev O B, Korobkin V V, Prokhorov A M, Solem J C, Luk T S, Boyer K, Rhodes C K 1992 Phys. Rev. A 45 5830

    [32]

    Wang W M, Zheng C Y 2006 Acta Phys. Sin. 55 310 (in Chinese) [王伟民, 郑春阳 2006 55 310]

    [33]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [34]

    Yu W, Bychenkov V, Sentoku Y, Yu M Y, Sheng Z M, Mima K 2000 Phys. Rev. Lett. 85 570

    [35]

    Kulagin V V, Cherepenin V A, Suk H 2004 Phys. Plasmas 11 5239

    [36]

    Wang W M, Sheng Z M, Kawata S, Zheng C Y, Li Y T, Chen L M, Dong Q L, Lu X, Ma J L, Zhang J 2012 J. Plasma Phys. 78 461

    [37]

    Meyer-ter-Vehn J, Pukhov A, Sheng Z M 2001 in: Atoms, Solids, and Plasmas in Super-Intense Laser Fields Edited by Batani D et al. (Norwell MA: Kluwer Academic/Plenum Publishers) pp167-192

    [38]

    Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004

    [39]

    Wang W M, Gibbon P, Sheng Z M, Li Y T 2015 Phys. Rev. E 91 013101

  • [1] Ji Liang-Liang, Geng Xue-Song, Wu Yi-Tong, Shen Bai-Fei, Li Ru-Xin. Laser-driven radiation-reaction effect and polarized particle acceleration. Acta Physica Sinica, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [2] Wei Liu-Lei, Cai Hong-Bo, Zhang Wen-Shuai, Tian Jian-Min, Zhang En-Hao, Xiong Jun, Zhu Shao-Ping. Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target. Acta Physica Sinica, 2019, 68(9): 094101. doi: 10.7498/aps.68.20182291
    [3] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [4] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] Zhang Kai, Zhong Jia-Yong, Pei Xiao-Xing, Li Yu-Tong, Sakawa Youichi, Wei Hui-Gang, Yuan Da-Wei, Li Fang, Han Bo, Wang Chen, He Hao, Yin Chuan-Lei, Liao Guo-Qian, Fang Yuan, Yang Su, Yuan Xiao-Hui, Liang Gui-Yun, Wang Fei-Lu, Zhu Jian-Qiang, Ding Yong-Kun, Zhang Jie, Zhao Gang. Measurement of jet evolution and electron energy spectrum during the process of laser-driven magnetic reconnection. Acta Physica Sinica, 2015, 64(16): 165201. doi: 10.7498/aps.64.165201
    [6] Mu Jie, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical studies on intense laser-generated relativistic high-energy electrons via a thin cone target. Acta Physica Sinica, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [7] Wang Guang-Hui, Wang Xiao-Fang, Dong Ke-Gong. Ultra-short ultra-intense laser guiding and its influence on electron acceleration. Acta Physica Sinica, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [8] Yan Chun-Yan, Zhang Qiu-Ju, Luo Mu-Hua. Generation of attosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [9] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [10] Zhang Bao-Han, Wang Xiao-Fang, Dong Ke-Gong, Gu Yu-Qiu, Zhu Bin, Wu Yu-Chi, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Jiao Chun-Ye, Wen Xian-Lun. Experimental generation of 58 MeV quasi-monoenergetic electron beam by ultra-intense femto-second laser wakefield. Acta Physica Sinica, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [11] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [12] Li Bai-Wen, Zheng Chun-Yang, Song Min, Liu Zhan-Jun. Stimulated Raman cascade-into-photon condensation and ultra-intense EM solitons in laser plasma interaction. Acta Physica Sinica, 2006, 55(10): 5325-5337. doi: 10.7498/aps.55.5325
    [13] Jin Xiao-Lin, Yang Zhong-Hai. The PIC/MCC simulation of the ionization processes in electron cyclotron resonance discharge (Ⅱ)——Numerical simulation and discussion of results. Acta Physica Sinica, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [14] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [15] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [16] He Feng, Yu Wei, Xu Han, Lu Pei-Xiang. Acceleration of a pre-accelerated electron by an ultra-short and ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] Tian You-Wei, Yu Wei, Lu Pei-Xiang, He Feng, Ma Fa-Jun, Xu Han, Jing Guo-Liang, Qian Lie-Jia. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212. doi: 10.7498/aps.54.4208
    [18] He Feng, Yu Wei, Lu Pei-Xiang, Yuan Xiao, Liu Jing-Ru. Electron acceleration by a tightly focused femtosecond laser beam in vacuum. Acta Physica Sinica, 2004, 53(1): 165-170. doi: 10.7498/aps.53.165
    [19] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [20] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
Metrics
  • Abstract views:  6088
  • PDF Downloads:  200
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2014
  • Accepted Date:  19 January 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map