搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超过30 GeV的强激光锁相直接电子加速

朱翰辰 周楚亮 李晓锋 田野 李儒新

引用本文:
Citation:

超过30 GeV的强激光锁相直接电子加速

朱翰辰, 周楚亮, 李晓锋, 田野, 李儒新

Over-30-GeV intense laser phase-locked direct electron acceleration

Zhu Han-Chen, Zhou Chu-Liang, Li Xiao-Feng, Tian Ye, Li Ru-Xin
cstr: 32037.14.aps.73.20240652
PDF
HTML
导出引用
  • 当超强激光斜入射辐照固体时, 预脉冲会先将固体表面等离子体化, 随后主脉冲将与等离子体相互作用并最终被等离子体反射. 同时, 等离子体中的部分电子将锁定在激光场的加速位相, 随后在激光场中获得有效加速, 该过程被称为锁相电子加速. 由于目前超强激光的电场强度已接近TV/m量级, 因此如果电子在激光场加速位相中停留足够长的时间, 便有可能获得百GeV甚至TeV量级的能量. 本文针对现有的超强激光参数, 通过单电子动力学模型, 对锁相机制中电子在激光场的加速过程展开系统研究. 研究结果表明, 峰值功率为10 PW量级的强激光可将电子直接加速至30 GeV左右. 本研究还给出了锁相加速机制中锁相电子的远场能量角分布, 以及最终能量等与激光场强度的定标关系. 考虑到激光强度的不断提高并且激光锁相电子加速机制也适用于正电子加速, 因此本研究结果将有望应用于小型化正负电子对撞机及高能伽马射线源等领域.
    When an intense laser obliquely irradiates a solid, a pre-pulse will first ionize the solid surface, followed by the main pulse interacting with the plasma and ultimately being reflected by the plasma. Simultaneously, certain electrons within the plasma will be trapped in the accelerating phase of the laser field, subsequently gaining effective acceleration within the field, this phenomenon is known as phase-locked electron acceleration. Given the current intense lasers' electric field intensity nearing the TV/m range, electrons could potentially acquire energy levels on the order of hundreds of GeV or even TeV, provided they stay in the accelerating phase of the laser field long enough. Here, we initially use PIC (Particle-in-Cell) simulations to simulate the interaction process between laser pulses and plasma, thereby obtaining the properties of phase-locked electrons. In order to reduce computational demands, we turn to use a three-dimensional (3D) test particle model to calculate the subsequent interactions of these electrons with the reflected laser field. By this model, we obtain the data of the locked-phase electrons after having interacted with the reflected laser (Fig. (a)). Furthermore, we use this model to calculate the dynamical behavior of electrons under different initial conditions (Fig. (b)). Under the laser intensity of $ {a}_{0}=350 $($ {a}_{0} $ is the normalized laser vector potential), the energy of the electrons directly accelerated by the laser is enhanced to 32 GeV. In contrast, under the same laser intensity, the energy of the electrons accelerated by ponderomotive force is only 0.35 GeV. The research findings indicate that the strong laser with peak power around 10 PW can directly accelerate electrons to approximately 30 GeV. Additionally, this study outlines the optimal initial conditions for injecting electrons into the laser field and the final electron energy within the phase-locked acceleration mechanism, thereby establishing a calibration relationship with the laser field intensity. Given the continual enhancement of laser intensity and the potential application of the laser phase-locked electron acceleration mechanism to positron acceleration, this research holds promise for its implementation in fields such as miniaturized positron-electron colliders and high-energy gamma-ray sources.
      通信作者: 田野, tianye@siom.ac.cn ; 李儒新, ruxinli@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12388102, 12325409, U226720057)、基础研究特区计划(批准号: JCYJ-SHFY-2021-002)和中国科学院基础研究领域青年团队计划(批准号: YSBR-060)资助的课题.
      Corresponding author: Tian Ye, tianye@siom.ac.cn ; Li Ru-Xin, ruxinli@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12388102, 12325409, U226720057), the Shanghai Pilot Program for Basic Research-Chinese Academy of Science, Shanghai Branch (Grant No. JCYJ-SHFY-2021-002), and the Project for Young Scientists in Basic Research, Chinese Academy of Science (Grant No. YSBR-060).
    [1]

    Dutta B, Ghosh S, Gurrola A, Julson D, Kamon T, Kumar J 2023 J. High Energ. Phys. 2023 164

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [3]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [4]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [5]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [6]

    Zeng Y S, Yu X Q, Tian Y 2023 Chin. J. Lasers 50 1714008 [曾雨珊, 余谢秋, 田野 2023 中国激光 50 1714008]Google Scholar

    Zeng Y S, Yu X Q, Tian Y 2023 Chin. J. Lasers 50 1714008Google Scholar

    [7]

    Yu X Q, Zeng Y S, Song L W, Kong D Y, Hao S B, Gui J Y, Yang X J, Xu Y, Wu X J, Leng Y X, Tian Y, Li R X 2023 Nat. Photonics 17 957Google Scholar

    [8]

    Lawson J D 1979 IEEE Trans. Nucl. Sci. 26 4217Google Scholar

    [9]

    Hartemann F V, Fochs S N, Le Sage G P, Luhmann N C Jr, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833Google Scholar

    [10]

    Esarey E, Sprangle P, Krall J 1995 Phys. Rev. E 52 5443Google Scholar

    [11]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407Google Scholar

    [12]

    Stupakov G V, Zolotorev M S 2001 Phys. Rev. Lett. 86 5274Google Scholar

    [13]

    Dodin I Y, Fisch N J 2003 Phys. Rev. E 68 056402Google Scholar

    [14]

    Salamin Y I, Keitel C H 2002 Phys. Rev. Lett. 88 095005Google Scholar

    [15]

    Pang J, Ho Y K, Yuan X Q, Cao N, Kong Q, Wang P X, Shao L, Esarey E H, Sessler A M 2002 Phys. Rev. E 66 066501

    [16]

    Maltsev A, Ditmire T 2003 Phys. Rev. Lett. 90 053002Google Scholar

    [17]

    Tian Y, Liu J S, Wang W T, Wang C, Deng A H, Xia C Q, Li W T, Cao L H, Lu H Y, Zhang H, Xu Y, Leng Y X, Li R X, Xu Z Z 2012 Phys. Rev. Lett. 109 115002Google Scholar

    [18]

    Thévenet M, Leblanc A, Kahaly S, Vincenti H, Vernier A, Quéré F, Faure J 2016 Nat. Phys. 12 355Google Scholar

    [19]

    Zhou C L, Bai Y F, Song L W, Zeng Y S, Xu Y, Zhang D D, Lu X M, Leng Y X, Liu J S, Tian Y, Li R X, Xu Z Z 2021 Nat. Photonics 15 216Google Scholar

    [20]

    Thaury C, Quéré F, Geindre J, Lévy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’Oliveira P, Audebert P, Marjoribanks R S, Martin P A 2007 Nat. Phys. 3 424Google Scholar

    [21]

    Doumy G, Quéré F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier J C, Geindre J P, Wittmann T 2004 Phys. Rev. E 69 026402Google Scholar

    [22]

    Quesnel B, Mora P 1998 Phys. Rev. E 58 3719Google Scholar

    [23]

    Ritus V I 1985 J. Russ. Laser Res. 6 497Google Scholar

    [24]

    Landau L D, Lifshitz E M 1971 The Classical Theory of Fields (Oxford: Pergamon Press

    [25]

    Stupakov G, Huang Z 2008 Phys. Rev. ST Accel. Beams 11 014401Google Scholar

    [26]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

  • 图 1  激光锁相加速电子示意图, 高斯激光脉冲以45°的入射角照射固体表面, 预脉冲会在固体表面产生等离子体, 随后主脉冲会被等离子体反射, 与此同时, 位于激光场特定相位的电子(黄色散点)会向外发射, 并被反射激光场持续加速

    Fig. 1.  Schematic diagram of laser-driven phase-locked acceleration of electrons, the Gaussian laser main pulse is incident on the photocathode at an angle of 45° and is then reflected by the plasma mirror generated by the pre-pulse. Meanwhile, electrons (yellow scattered points) at a specific phase in the laser field are emitted outward and then directly accelerated by the reflected laser field.

    图 3  锁相电子与反射激光相互作用后电子数据 (a)电子的能量角分布, 其中$ {\theta }_{x} $=$ {\mathrm{a}}{\mathrm{r}}{\mathrm{c}}{\mathrm{t}}{\mathrm{a}}{\mathrm{n}}({p}_{x}/{p}_{z}) $, $ {\theta }_{y} $=$ {{\mathrm{a}}{\mathrm{r}}{\mathrm{c}}{\mathrm{t}}{\mathrm{a}}{\mathrm{n}}(p}_{y}/{p}_{z}) $, 颜色图为电子的γ值; (b)与反射激光相互作用后的电子能谱

    Fig. 3.  Energy-angular distribution of the locked-phase electrons after having interacted with the reflected laser: (a) Energy-angular distribution of the electrons, where $ {\theta }_{x} $=$ {\mathrm{a}}{\mathrm{r}}{\mathrm{c}}{\mathrm{t}}{\mathrm{a}}{\mathrm{n}}({p}_{x}/{p}_{z}) $, $ {\theta }_{y} $=$ {{\mathrm{a}}{\mathrm{r}}{\mathrm{c}}{\mathrm{t}}{\mathrm{a}}{\mathrm{n}}(p}_{y}/{p}_{z}) $, the color bar represents the γ values of the electrons; (b) electron energy spectrum after the interaction with the reflected laser.

    图 2  锁相电子的初始状态  (a)相互作用过程中电子密度的空间分布图, 其中x方向是入射激光的传播方向, z方向是反射激光的传播方向; (b)出射电子与反射激光场的相位关系, 红色曲线为反射激光强度, 蓝色曲线为出射电子密度, 电子在反射激光场过零点对应的相位发射; (c) γ值大于5的出射电子的能谱; (d)出射电子的动量分布, $ {p}_{x} $为电子沿激光偏振方向的动量, $ {p}_{z} $为电子沿激光传播方向的动量

    Fig. 2.  (a) Spatial distribution map of electron density during the interaction process, where the x-direction represents the propagation direction of the incident laser and the z-direction represents the propagation direction of the reflected laser; (b) phase relationship between the emitted electrons and the reflected laser field is illustrated, with the red curve representing the intensity of the reflected laser and the blue curve indicating the electron density, electrons are emitted at the zero-crossing points of the reflected laser; (c) energy spectrum of emitted electrons with γ > 5; (d) momentum distribution of these electrons, $ {p}_{x} $ is the momentum along the polarization direction of the reflected laser and $ {p}_{z} $ is the momentum along the specular direction of the reflected laser.

    图 4  不同初始动量的电子与激光场相互作用过程 (a) 电子能量值随时间的变化, 一类电子(蓝色实线)代表激光锁相加速, 二类电子(黄色实线)代表有质动力加速机制; (b) 两种电子对应的运动轨迹; (c)随激光运动参考系下一类电子的运动轨迹, 其中红色曲线为激光场的空间分布, 虚线框标明了一类电子相对激光移动的相位范围

    Fig. 4.  Interaction process of phase-locked electrons with the reflected laser field with different initial momenta: (a) Temporal evolution of relativistic factor γ about two typical electros, Type I (blue curve) was accelerated based on the locking-phase mechanism and the acceleration of Type II (orange curve) could be treated as the effect of pondermotive force; (b) the corresponding trajectories about the two electrons; (c) Type I’s trajectory in a frame moving with the laser beam, red curve sketches the laser field in this frame, the dashed box indicates the phase range of the movement of Type I.

    图 5  电子加速能量与激光强度的定标关系 (a)最终时刻, 电子相对论因子$ \gamma $的值与激光强度a0之间的关系, 其中蓝线为不考虑RR的结果, 红线为考虑RR的结果; (b) RR效应对电子能量的影响随a0的变化关系

    Fig. 5.  Scaling relationship between electron acceleration energy and laser intensity: (a) Relationship between the relativistic factor γ of electrons at the final moment and the laser intensity a0, the blue line represents the results without considering radiation reaction (RR), while the red line represents the results considering RR; (b) variation of the impact of RR on electron energy with respect to the change in a0.

    Baidu
  • [1]

    Dutta B, Ghosh S, Gurrola A, Julson D, Kamon T, Kumar J 2023 J. High Energ. Phys. 2023 164

    [2]

    Bostedt C, Boutet S, Fritz D M, Huang Z R, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [3]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar

    [4]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219Google Scholar

    [5]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [6]

    Zeng Y S, Yu X Q, Tian Y 2023 Chin. J. Lasers 50 1714008 [曾雨珊, 余谢秋, 田野 2023 中国激光 50 1714008]Google Scholar

    Zeng Y S, Yu X Q, Tian Y 2023 Chin. J. Lasers 50 1714008Google Scholar

    [7]

    Yu X Q, Zeng Y S, Song L W, Kong D Y, Hao S B, Gui J Y, Yang X J, Xu Y, Wu X J, Leng Y X, Tian Y, Li R X 2023 Nat. Photonics 17 957Google Scholar

    [8]

    Lawson J D 1979 IEEE Trans. Nucl. Sci. 26 4217Google Scholar

    [9]

    Hartemann F V, Fochs S N, Le Sage G P, Luhmann N C Jr, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833Google Scholar

    [10]

    Esarey E, Sprangle P, Krall J 1995 Phys. Rev. E 52 5443Google Scholar

    [11]

    He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407Google Scholar

    [12]

    Stupakov G V, Zolotorev M S 2001 Phys. Rev. Lett. 86 5274Google Scholar

    [13]

    Dodin I Y, Fisch N J 2003 Phys. Rev. E 68 056402Google Scholar

    [14]

    Salamin Y I, Keitel C H 2002 Phys. Rev. Lett. 88 095005Google Scholar

    [15]

    Pang J, Ho Y K, Yuan X Q, Cao N, Kong Q, Wang P X, Shao L, Esarey E H, Sessler A M 2002 Phys. Rev. E 66 066501

    [16]

    Maltsev A, Ditmire T 2003 Phys. Rev. Lett. 90 053002Google Scholar

    [17]

    Tian Y, Liu J S, Wang W T, Wang C, Deng A H, Xia C Q, Li W T, Cao L H, Lu H Y, Zhang H, Xu Y, Leng Y X, Li R X, Xu Z Z 2012 Phys. Rev. Lett. 109 115002Google Scholar

    [18]

    Thévenet M, Leblanc A, Kahaly S, Vincenti H, Vernier A, Quéré F, Faure J 2016 Nat. Phys. 12 355Google Scholar

    [19]

    Zhou C L, Bai Y F, Song L W, Zeng Y S, Xu Y, Zhang D D, Lu X M, Leng Y X, Liu J S, Tian Y, Li R X, Xu Z Z 2021 Nat. Photonics 15 216Google Scholar

    [20]

    Thaury C, Quéré F, Geindre J, Lévy A, Ceccotti T, Monot P, Bougeard M, Réau F, d’Oliveira P, Audebert P, Marjoribanks R S, Martin P A 2007 Nat. Phys. 3 424Google Scholar

    [21]

    Doumy G, Quéré F, Gobert O, Perdrix M, Martin P, Audebert P, Gauthier J C, Geindre J P, Wittmann T 2004 Phys. Rev. E 69 026402Google Scholar

    [22]

    Quesnel B, Mora P 1998 Phys. Rev. E 58 3719Google Scholar

    [23]

    Ritus V I 1985 J. Russ. Laser Res. 6 497Google Scholar

    [24]

    Landau L D, Lifshitz E M 1971 The Classical Theory of Fields (Oxford: Pergamon Press

    [25]

    Stupakov G, Huang Z 2008 Phys. Rev. ST Accel. Beams 11 014401Google Scholar

    [26]

    Piazza A D, Müller C, Hatsagortsyan K Z, Keitel C H 2012 Rev. Mod. Phys. 84 1177Google Scholar

  • [1] 李传可, 林南省, 周鲜鲜, 江淼, 李英骏. 双振荡场产生正负电子对的理论研究.  , 2024, 73(4): 044201. doi: 10.7498/aps.73.20230432
    [2] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形.  , 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [3] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对.  , 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [4] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [5] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应.  , 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [6] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展.  , 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [7] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应.  , 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [8] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展.  , 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [9] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器.  , 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [10] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案.  , 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [11] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法.  , 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [12] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象.  , 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [13] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束.  , 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [14] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响.  , 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [15] 赵志国, 吕百达. 用拉盖尔-高斯激光对真空中电子直接加速.  , 2006, 55(4): 1798-1802. doi: 10.7498/aps.55.1798
    [16] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速.  , 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] 常文蔚, 张立夫, 邵福球. 激光等离子体波电子加速器.  , 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [18] 朱莳通, 沈文达, 邱锡铭, 王之江. 激光加速器中电子能量增益的广义协变推导.  , 1989, 38(4): 559-566. doi: 10.7498/aps.38.559
    [19] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器.  , 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
    [20] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用.  , 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
计量
  • 文章访问数:  956
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-09-13
  • 上网日期:  2024-09-19
  • 刊出日期:  2024-10-05

/

返回文章
返回
Baidu
map