Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic properties of one-dimensional Gaudin-Yang model at finite temperature

Zhang Tian-Bao Yu Xuan-Ping Chen A-Hai

Citation:

Thermodynamic properties of one-dimensional Gaudin-Yang model at finite temperature

Zhang Tian-Bao, Yu Xuan-Ping, Chen A-Hai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The one-dimensional system interacting via a delta-function interparticle interaction is a very important one in cold atomic systems and has fundamental importance in many-body physics. In one dimension, due to the geometric confinement induced quantum correlations and quantum fluctuations, there may exist a number of unusual phenomena, such as spin-charge separation, effective fermionization and quantum criticality. This paper studies the basic properties of a uniform one-dimensional Gaudin-Yang model for fermions by solving the thermodynamic Bethe-ansatz equations by a numerical method. Numerically, we use the many-variable Newton’s method to solve the coupled equations. We analyze the physical properties, including density, interaction, temperature and entropy at a given temperature and a given interaction, separately. We know that a lot of researches are limited to zero temperature. However, we cannot reach the absolute zero temperature in the real cold atomic experiment. So it is important to deal with the finite temperature problems. We study the density and entropy as a function of the chemical potential, temperature and interaction and, then give the phase diagrams, respectively. We found that there is a quantum critical zone in the phase diagram of entropy, including the high temperature zone with thermal fluctuations and the Luttinger liquid zone with quantum fluctuations. For a given temperature and low chemical potential, the thermal fluctuations are the main factor in the entropy. With the increase of chemical potential, the system enters the quantum critical zone where the competitive effect between the thermal fluctuations and the quantum fluctuations exists. When the chemical potential is large enough, the quantum fluctuations become the main factor in the system’s entropy, and we get the Luttinger liquid phase. Our results can be further used in the finite temperature density-functional theory and to analyze the collective phenomena at a finite temperature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174253, 11374266), and the Natural Science Foundation of Zhejiang Province, China (Grant No. R6110175).
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Feshbach H 1958 Ann. Phys. 5 357

    [3]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

    [4]

    DeMarco B, Jin D S 1999 Science 285 1703

    [5]

    Köhl M, Moritz H, Stöferle T, Gnter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403

    [6]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 54 5104]

    [7]

    Cazalilla M A, Citro R, Giamarchi T, Orignac E, Rigol M 2011 Rev. Mod. Phys. 83 1405

    [8]

    Guan X W, Batchelor M T, Lee C H 2013 Rev. Mod. Phys. 85 1633

    [9]

    Gao X L 2010 Phys. Rev. B 81 104306

    [10]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [11]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 60 120305]

    [12]

    Astrakharchik G E, Blume D, Giorgini S, Pitaevskii L P 2004 Phys. Rev. Lett. 93 050402

    [13]

    van Amerongen A H, van Es J J P, Wicke P, Kheruntsyan K V, van Druten N J 2008 Phys. Rev. Lett. 100 090402

    [14]

    Moritz H, Stöferle T, Köhl M, Esslinger T 2003 Phys. Rev. Lett. 91 250402

    [15]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [16]

    Gaudin M 1967 Phys. Lett. A 24 55

    [17]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610

    [18]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [19]

    Gao X L, Polini M, Asgari R, Tosi M P 2006 Phys. Rev. A 73 033609

    [20]

    Guan L M, Chen S, Wang Y P, Ma Z Q 2009 Phys. Rev. Lett. 102 160402

    [21]

    Takahashi M 1971 Prog. Theor. Phys. 46 1388

    [22]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [23]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [24]

    Chen Y Y, Jiang Y Z, Guan X W, Zhou Q 2014 Nat. Commun. 5

    [25]

    Hoffman M D, Javernick P, Loheac A C, Porter W J, Anderson E R, Drut J E 2014 arXiv:1410.7370vl

    [26]

    Zhao E, Guan X W, Liu W V, Batchelor M T, Oshikawa M 2009 Phys. Rev. Lett. 103 140404

    [27]

    Batchelor M T, Foerster A, Guan X W, Kuhn C C N 2010 J. Stat. Mech. P12014

    [28]

    Klmper A, Pâţu O I 2011 Phys. Rev. A 84 051604

    [29]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403

    [30]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2005 Phys. Rev. A 71 053615

    [31]

    Takahashi M 1972 Prog. Theor. Phys. 47 69

    [32]

    Usuki T, Kawakami N, Okiji A 1989 Phys. Lett. A 135 476

    [33]

    Usuki T, Kawakami N, Okiji A 1990 J.Phys. Soc. Jpn. 59 1357

    [34]

    Suzuki M 1985 Phys. Rev. B 31 2957

    [35]

    Suzuki M, Inoue M 1987 Prog. Theor. Phys. 78 787

    [36]

    Jttner G, Klmper A, Suzuki J 1998 Nucl. Phys. B 522 471

    [37]

    Klmper A, Bariev R Z 1996 Nucl. Phys. B 458 623

    [38]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [39]

    Khatami E, Rigol M 2011 Phys. Rev. A 84 053611

    [40]

    Wolak M J, Rousseau V G, Miniatura C, Grémaud B, Scalettar R T, Batrouni G G 2010 Phys. Rev. A 82 013614

    [41]

    Snyder A, Tanabe I, De Silva T 2011 Phys. Rev. A 83 063632

    [42]

    Carmelo J M P, Gu S J, Sampaio M J 2014 J. Phys. 47 255004

    [43]

    Carmelo J M P, Gu S J, Sacramento P D 2013 Ann. Phys. 339 484

    [44]

    Chen F, Ying H P, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1672 (in Chinese) [陈锋, 应和平, 徐铁锋, 李文铸 1994 43 1672]

    [45]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [46]

    Campo V L 2014 arXiv:1407.6726vl

    [47]

    Olshanii M 1998 Phys. Rev. Lett. 81 938

    [48]

    Dunjko V, Lorent V, Olshanii M 2001 Phys. Rev. Lett. 86 5413

    [49]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [50]

    Wei F X,Gao X L 2014 Journal of Zhejiang Normal University (Nat. Sci.) 37 54 (in Chinese) [卫福霞, 高先龙 2014 浙江师范大学学报(自然科学版) 37 54]

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Feshbach H 1958 Ann. Phys. 5 357

    [3]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

    [4]

    DeMarco B, Jin D S 1999 Science 285 1703

    [5]

    Köhl M, Moritz H, Stöferle T, Gnter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403

    [6]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 54 5104]

    [7]

    Cazalilla M A, Citro R, Giamarchi T, Orignac E, Rigol M 2011 Rev. Mod. Phys. 83 1405

    [8]

    Guan X W, Batchelor M T, Lee C H 2013 Rev. Mod. Phys. 85 1633

    [9]

    Gao X L 2010 Phys. Rev. B 81 104306

    [10]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [11]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 60 120305]

    [12]

    Astrakharchik G E, Blume D, Giorgini S, Pitaevskii L P 2004 Phys. Rev. Lett. 93 050402

    [13]

    van Amerongen A H, van Es J J P, Wicke P, Kheruntsyan K V, van Druten N J 2008 Phys. Rev. Lett. 100 090402

    [14]

    Moritz H, Stöferle T, Köhl M, Esslinger T 2003 Phys. Rev. Lett. 91 250402

    [15]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [16]

    Gaudin M 1967 Phys. Lett. A 24 55

    [17]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610

    [18]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [19]

    Gao X L, Polini M, Asgari R, Tosi M P 2006 Phys. Rev. A 73 033609

    [20]

    Guan L M, Chen S, Wang Y P, Ma Z Q 2009 Phys. Rev. Lett. 102 160402

    [21]

    Takahashi M 1971 Prog. Theor. Phys. 46 1388

    [22]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [23]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [24]

    Chen Y Y, Jiang Y Z, Guan X W, Zhou Q 2014 Nat. Commun. 5

    [25]

    Hoffman M D, Javernick P, Loheac A C, Porter W J, Anderson E R, Drut J E 2014 arXiv:1410.7370vl

    [26]

    Zhao E, Guan X W, Liu W V, Batchelor M T, Oshikawa M 2009 Phys. Rev. Lett. 103 140404

    [27]

    Batchelor M T, Foerster A, Guan X W, Kuhn C C N 2010 J. Stat. Mech. P12014

    [28]

    Klmper A, Pâţu O I 2011 Phys. Rev. A 84 051604

    [29]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403

    [30]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2005 Phys. Rev. A 71 053615

    [31]

    Takahashi M 1972 Prog. Theor. Phys. 47 69

    [32]

    Usuki T, Kawakami N, Okiji A 1989 Phys. Lett. A 135 476

    [33]

    Usuki T, Kawakami N, Okiji A 1990 J.Phys. Soc. Jpn. 59 1357

    [34]

    Suzuki M 1985 Phys. Rev. B 31 2957

    [35]

    Suzuki M, Inoue M 1987 Prog. Theor. Phys. 78 787

    [36]

    Jttner G, Klmper A, Suzuki J 1998 Nucl. Phys. B 522 471

    [37]

    Klmper A, Bariev R Z 1996 Nucl. Phys. B 458 623

    [38]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [39]

    Khatami E, Rigol M 2011 Phys. Rev. A 84 053611

    [40]

    Wolak M J, Rousseau V G, Miniatura C, Grémaud B, Scalettar R T, Batrouni G G 2010 Phys. Rev. A 82 013614

    [41]

    Snyder A, Tanabe I, De Silva T 2011 Phys. Rev. A 83 063632

    [42]

    Carmelo J M P, Gu S J, Sampaio M J 2014 J. Phys. 47 255004

    [43]

    Carmelo J M P, Gu S J, Sacramento P D 2013 Ann. Phys. 339 484

    [44]

    Chen F, Ying H P, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1672 (in Chinese) [陈锋, 应和平, 徐铁锋, 李文铸 1994 43 1672]

    [45]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [46]

    Campo V L 2014 arXiv:1407.6726vl

    [47]

    Olshanii M 1998 Phys. Rev. Lett. 81 938

    [48]

    Dunjko V, Lorent V, Olshanii M 2001 Phys. Rev. Lett. 86 5413

    [49]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [50]

    Wei F X,Gao X L 2014 Journal of Zhejiang Normal University (Nat. Sci.) 37 54 (in Chinese) [卫福霞, 高先龙 2014 浙江师范大学学报(自然科学版) 37 54]

  • [1] Sun Jia-Kun, Lin Chuan-Dong, Su Xian-Li, Tan Zhi-Cheng, Chen Ya-Lou, Ming Ping-Jian. Solution of the discrete Boltzmann equation: Based on the finite volume method. Acta Physica Sinica, 2024, 73(11): 110504. doi: 10.7498/aps.73.20231984
    [2] Zhan Shao-Kang, Wang Jin-Dong, Dong Shuang, Huang Si-Ying, Hou Qing-Cheng, Mo Nai-Da, Mi Shang, Xiang Li-Bing, Zhao Tian-Ming, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Finite-key analysis of decoy model semi-quantum key distribution based on four-state protocol. Acta Physica Sinica, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [3] Liu Ni, Huang Shan, Li Jun-Qi, Liang Jiu-Qing. Phase transition and thermodynamic properties of N two-level atoms in an optomechanical cavity at finite temperature. Acta Physica Sinica, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [4] Wang Yan-Cheng, Qiu Wu-Jie, Yang Hong-Liang, Xi Li-Li, Yang Jiong, Zhang Wen-Qing. Thermal transport and microscopic dynamics in filled skutterudite YbFe4Sb12 studied by ab initio molecular dynamics simulation. Acta Physica Sinica, 2018, 67(1): 016301. doi: 10.7498/aps.67.20171406
    [5] Lu Zhan-Peng, Wei Xing-Bo, Liu Tian-Shuai, Chen A-Hai, Gao Xian-Long. Chemical potential-functional-theory about the properties of one-dimensional Hubbard model at finite temperature. Acta Physica Sinica, 2017, 66(12): 126701. doi: 10.7498/aps.66.126701
    [6] Yuan Du-Qi. Thermodynamics of trapped finite unitary Fermi gas. Acta Physica Sinica, 2016, 65(18): 180302. doi: 10.7498/aps.65.180302
    [7] Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li. Properties of excited state of polaron in quantum disk in finite depth parabolic potential well. Acta Physica Sinica, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [8] Wang Mei-Jiao, Xia Yun-Jie. Protecting quantum entanglement at finite temperature by the weak measurements. Acta Physica Sinica, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [9] Hao Da-Peng, Tang Gang, Xia Hui, Han Kui, Xun Zhi-Peng. Finite size effect of the ballistic depositionmodel with shadowing. Acta Physica Sinica, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [10] Chen He-Sheng. Phase transition of lattice quantum chromodynamics with 2+1 flavor fermions at finite temperature and finite density. Acta Physica Sinica, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [11] Su Jie, Wang Ji-Suo, Liang Bao-Long, Zhang Xiao-Yan. The energy and thermal effects of mesoscopic capacitance coupling LC circuit at finite temperature. Acta Physica Sinica, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [12] Deng Qiang, Yan Jun. A two-dimensional dark energy star model at finite temperature. Acta Physica Sinica, 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [13] Xie Yan-Bo, Wang Bing-Hong, Quan Hong-Jun, Yang Wei-Song, Wang Wei-Ning. Finite size effect in EZ model. Acta Physica Sinica, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
    [14] XIONG YUAN-SHENG, YI LIN, YAO KAI-LUN. THERMODYNAMIC PROPERTIES OF QUANTUM SHERRI-NGTON-KIRKPATRICK SPIN GLASS MODEL——ANISOTROPY AND MAGNETIC EFFECTS. Acta Physica Sinica, 1994, 43(12): 2052-2058. doi: 10.7498/aps.43.2052
    [15] HUANG DONG, WENG YONG-GANG. THERMODYNAMICAL BEHAVIOR OF THE ISING MODEL WITH FERROMAGNETIC AND ANTI-FERROMAGNETIC INTERACTIONS. Acta Physica Sinica, 1994, 43(7): 1172-1176. doi: 10.7498/aps.43.1172
    [16] DU YING-LEI, WU BAI-MEI. A STUDY ON THERMAL PROPERTIES FOR ZrO2 COATINGS BY ARC PHOTOTHERMAL TECHNIQUE AND FINITE-DIFFERENCE THERMAL FLOW MODEL. Acta Physica Sinica, 1994, 43(11): 1821-1827. doi: 10.7498/aps.43.1821
    [17] CHHN FENG, YING HE-PING, XU TIE-FENG, LI WEN-ZHU. INSULATOR-METAL TRANSITION OF THE 2-D HALF-FILLED HUBBARD MODEL AT FINITE-TEMPERATURES. Acta Physica Sinica, 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [18] LI GUO-QIANG. FINITE TEMPERATURE SELF-CONSISTENT SEMICLASSICAL EQUATION AND ITS IMAGINARY TIME STEP SOLUTION. Acta Physica Sinica, 1991, 40(2): 175-181. doi: 10.7498/aps.40.175
    [19] LI GUO-QIANG, XU GONG-OU. THE PROPERTITIES OF GIANT RESONANCED ON HOT NUC-LEI STUDIED BY FINITE TEMPERATURE SELFCO-NSISTENT SEMICLASSICAL APPROACH. Acta Physica Sinica, 1989, 38(9): 1413-1421. doi: 10.7498/aps.38.1413
    [20] XIONG XIAO-MING, ZHOU SHI-XUN. FINITE CLUSTER STUDIES OF THE FQHE. Acta Physica Sinica, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
Metrics
  • Abstract views:  6095
  • PDF Downloads:  197
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2015
  • Accepted Date:  18 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map