-
Filled skutterudite is a typical thermoelectric material with high thermoelectric figure of merit at intermediate temperatures. One of the important features is the low lattice thermal conductivity (L) caused by the low frequency vibrations of filler atoms in the oversized void cages. In the past decades, it has been still under debate whether the underlying phonon scattering mechanism should be considered to be resonant scattering or enhanced three-phonon process. To clarify the role played by the filler atoms in reducing the lattice thermal conductivity, we study the microscopic dynamical process of filler and related interactions by means of ab initio molecular dynamics (AIMD) and temperature dependent effective potential (TDEP) technique. Firstly, we simulate the dynamical trajectories of fully filled skutterudite YbFe4Sb12 at different temperatures through AIMD. In this approach, the nonlinear guest-host interactions at finite temperatures are taken into consideration naturally from dynamical trajectories. Then, we extract the effective temperature-dependent harmonic and anharmonic interatomic force constants (IFCs) by TDEP method through the statistical analyses of both trajectories and forces. The atomic participation ratios and lifetimes of phonon modes are calculated based on the effective IFCs. The results demonstrate that the local vibration modes of Yb couple with acoustic branches and reduce the lifetimes of the lattice phonons significantly. However, the calculated L, which is on the assumption that the filler interacts with lattice phonons through three-phonon collision, still deviates from the experimental result. In order to rationalize the discrepancy, we analyze the correlation properties between different Yb atoms by velocity coherence in atomic dynamical motions. The localized and independent vibration characteristic of Yb is found in this analysis. This implies that the motions of Yb atoms deviate from the periodic and collective vibration excitation paradigm of phonon. Therefore, the mechanism for how filler atoms scatter lattice phonon and enhance thermal resistance is beyond three-phonon scattering process. We thus introduce resonant scattering into the lifetimes of Yb-dominant localized vibration modes, and so-calculated L is in a good agreement with the experimental data. Overall, we come to a conclusion that both the phonon-phonon interaction and the resonant scattering due to the localized oscillators cause the low lattice thermal conductivity of YbFe4Sb12.
-
Keywords:
- filled skutterudite /
- finite temperature /
- correlation of atoms /
- beyond three-phonon scattering
[1] Shi X, Xi L L, Yang J, Zhang W Q, Chen L D 2011 Physics. 40 710(in Chinese) [史迅, 席丽丽, 杨炯, 张文清, 陈立东 2011 物理 40 710]
[2] Nolas G S, Morelli D T, Tritt T M 1999 Annu. Rev. Mater. Sci. 29 89
[3] Shi X, Bai S, Xi L, Yang J, Zhang W, Chen L, Yang J 2011 J. Mater. Res. 26 1745
[4] Rull-Bravo M, Moure A, Fernndez J F, Martn-Gonzlez M 2015 RSC Adv. 5 41653
[5] Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, Chen L 2011 J. Am. Chem. Soc. 133 7837
[6] Rogl G, Aabdin Z, Schafler E, Horky J, Setman D, Zehetbauer M, Kriegisch M, Eibl O, Grytsiv A, Bauer E 2012 J. Alloys Compd. 537 183
[7] Xi L L, Yang J, Shi X, Zhang W Q, Chen L D, Yang J H 2011 Sci. China: Phys. Mech. Astron.. 41 706(in Chinese) [席丽丽, 杨炯, 史迅, 张文清, 陈立东, 杨继辉 2011 中国科学: 物理学 力学 天文学 41 706]
[8] Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665
[9] Nolas G, Cohn J, Slack G 1998 Phys. Rev.. 58 164
[10] Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin.. 58 306(in Chinese) [黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉 2009 58 306]
[11] Keppens V, Mandrus D, Sales B C, Chakoumakos B C, Dai P, Coldea R, Maple M B, Gajewski D A, Freeman E J, Bennington S 1998 Nature 395 876
[12] Hermann R P, Jin R, Schweika W, Grandjean F, Mandrus D, Sales B C, Long G J 2003 Phys. Rev. Lett. 90 135505
[13] Dimitrov I K, Manley M E, Shapiro S M, Yang J, Zhang W, Chen L D, Jie Q, Ehlers G, Podlesnyak A, Camacho J, Li Q 2010 Phys. Rev.. 82 174301
[14] Feldman J L, Singh D J, Mazin I I, Mandrus D, Sales B C 2000 Phys. Rev.. 61 R9209
[15] Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805
[16] Li W, Mingo N 2015 Phys. Rev.. 91 144304
[17] Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. USA 111 15031
[18] Qiu W, Ke X, Xi L, Wu L, Yang J, Zhang W 2016 Sci. China: Phys. Mech. Astron. 59 627001
[19] Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922
[20] Togo A, Oba F, Tanaka I 2008 Phys. Rev.. 78 134106
[21] Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747
[22] Hellman O, Steneteg P, Abrikosov I A, Simak S I 2013 Phys. Rev.. 87 104111
[23] Hellman O, Abrikosov I A 2013 Phys. Rev.. 88 144301
[24] Srivastava G P 1990 The Physics of Phonons (Boca Raton: CRC press) p88
[25] Hellman O, Broido D A 2014 Phys. Rev.. 90 134309
[26] Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501
[27] Slack G A, Galginaitis S 1964 Phys. Rev. 133 A253
[28] Chen L D, Kawahara T, Tang X F, Goto T, Hirai T, Dyck J S, Chen W, Uher C 2001 J. Appl. Phys. 90 1864
[29] Nolas G S, Fowler G, Yang J 2006 J. Appl. Phys. 100 043705
[30] Guo R, Wang X, Huang B 2015 Sci. Rep. 5 7806
[31] Hafner J, Krajci M 1993 J. Phys.: Condens. Matter 5 2489
[32] Pailhes S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S, de Boissieu M 2014 Phys. Rev. Lett. 113 025506
[33] Euchner H, Pailhs S, Nguyen L T K, Assmus W, Ritter F, Haghighirad A, Grin Y, Paschen S, de Boissieu M 2012 Phys. Rev.. 86 224303
[34] Zhao X Y, Shi X, Chen L D, Zhang W Q, Bai S Q, Pei Y Z, Li X Y, Goto T 2006 Appl. Phys. Lett. 89 092121
[35] Cowley R A 1968 Rep. Prog. Phys. 31 123
[36] Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811
[37] Pohl R 1962 Phys. Rev. Lett. 8 481
[38] Qiu P F, Yang J, Liu R H, Shi X, Huang X Y, Snyder G J, Zhang W, Chen L D 2011 J. Appl. Phys. 109 063713
-
[1] Shi X, Xi L L, Yang J, Zhang W Q, Chen L D 2011 Physics. 40 710(in Chinese) [史迅, 席丽丽, 杨炯, 张文清, 陈立东 2011 物理 40 710]
[2] Nolas G S, Morelli D T, Tritt T M 1999 Annu. Rev. Mater. Sci. 29 89
[3] Shi X, Bai S, Xi L, Yang J, Zhang W, Chen L, Yang J 2011 J. Mater. Res. 26 1745
[4] Rull-Bravo M, Moure A, Fernndez J F, Martn-Gonzlez M 2015 RSC Adv. 5 41653
[5] Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, Chen L 2011 J. Am. Chem. Soc. 133 7837
[6] Rogl G, Aabdin Z, Schafler E, Horky J, Setman D, Zehetbauer M, Kriegisch M, Eibl O, Grytsiv A, Bauer E 2012 J. Alloys Compd. 537 183
[7] Xi L L, Yang J, Shi X, Zhang W Q, Chen L D, Yang J H 2011 Sci. China: Phys. Mech. Astron.. 41 706(in Chinese) [席丽丽, 杨炯, 史迅, 张文清, 陈立东, 杨继辉 2011 中国科学: 物理学 力学 天文学 41 706]
[8] Slack G A, Tsoukala V G 1994 J. Appl. Phys. 76 1665
[9] Nolas G, Cohn J, Slack G 1998 Phys. Rev.. 58 164
[10] Huang L F, Li Y L, Ni M Y, Wang X L, Zhang G R, Zeng Z 2009 Acta Phys. Sin.. 58 306(in Chinese) [黄良锋, 李延龄, 倪美燕, 王贤龙, 张国仁, 曾雉 2009 58 306]
[11] Keppens V, Mandrus D, Sales B C, Chakoumakos B C, Dai P, Coldea R, Maple M B, Gajewski D A, Freeman E J, Bennington S 1998 Nature 395 876
[12] Hermann R P, Jin R, Schweika W, Grandjean F, Mandrus D, Sales B C, Long G J 2003 Phys. Rev. Lett. 90 135505
[13] Dimitrov I K, Manley M E, Shapiro S M, Yang J, Zhang W, Chen L D, Jie Q, Ehlers G, Podlesnyak A, Camacho J, Li Q 2010 Phys. Rev.. 82 174301
[14] Feldman J L, Singh D J, Mazin I I, Mandrus D, Sales B C 2000 Phys. Rev.. 61 R9209
[15] Koza M M, Johnson M R, Viennois R, Mutka H, Girard L, Ravot D 2008 Nat. Mater. 7 805
[16] Li W, Mingo N 2015 Phys. Rev.. 91 144304
[17] Qiu W, Xi L, Wei P, Ke X, Yang J, Zhang W 2014 Proc. Natl. Acad. Sci. USA 111 15031
[18] Qiu W, Ke X, Xi L, Wu L, Yang J, Zhang W 2016 Sci. China: Phys. Mech. Astron. 59 627001
[19] Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922
[20] Togo A, Oba F, Tanaka I 2008 Phys. Rev.. 78 134106
[21] Li W, Carrete J, A. Katcho N, Mingo N 2014 Comput. Phys. Commun. 185 1747
[22] Hellman O, Steneteg P, Abrikosov I A, Simak S I 2013 Phys. Rev.. 87 104111
[23] Hellman O, Abrikosov I A 2013 Phys. Rev.. 88 144301
[24] Srivastava G P 1990 The Physics of Phonons (Boca Raton: CRC press) p88
[25] Hellman O, Broido D A 2014 Phys. Rev.. 90 134309
[26] Li C W, Hellman O, Ma J, May A F, Cao H B, Chen X, Christianson A D, Ehlers G, Singh D J, Sales B C, Delaire O 2014 Phys. Rev. Lett. 112 175501
[27] Slack G A, Galginaitis S 1964 Phys. Rev. 133 A253
[28] Chen L D, Kawahara T, Tang X F, Goto T, Hirai T, Dyck J S, Chen W, Uher C 2001 J. Appl. Phys. 90 1864
[29] Nolas G S, Fowler G, Yang J 2006 J. Appl. Phys. 100 043705
[30] Guo R, Wang X, Huang B 2015 Sci. Rep. 5 7806
[31] Hafner J, Krajci M 1993 J. Phys.: Condens. Matter 5 2489
[32] Pailhes S, Euchner H, Giordano V M, Debord R, Assy A, Gomes S, Bosak A, Machon D, Paschen S, de Boissieu M 2014 Phys. Rev. Lett. 113 025506
[33] Euchner H, Pailhs S, Nguyen L T K, Assmus W, Ritter F, Haghighirad A, Grin Y, Paschen S, de Boissieu M 2012 Phys. Rev.. 86 224303
[34] Zhao X Y, Shi X, Chen L D, Zhang W Q, Bai S Q, Pei Y Z, Li X Y, Goto T 2006 Appl. Phys. Lett. 89 092121
[35] Cowley R A 1968 Rep. Prog. Phys. 31 123
[36] Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R, Iversen B B 2008 Nat. Mater. 7 811
[37] Pohl R 1962 Phys. Rev. Lett. 8 481
[38] Qiu P F, Yang J, Liu R H, Shi X, Huang X Y, Snyder G J, Zhang W, Chen L D 2011 J. Appl. Phys. 109 063713
Catalog
Metrics
- Abstract views: 7182
- PDF Downloads: 445
- Cited By: 0