-
为进一步揭示霍尔推力器放电通道绝缘壁面鞘层的特性, 利用考虑了壁面二次电子分布函数的一维稳态流体鞘层模型, 研究了壁面二次电子发射对近壁双鞘特性的影响. 分析结果表明, 由于壁面发射的二次电子对近壁鞘层中的电子密度有增加作用, 存在一个临界二次电子发射系数σdc使得: 当σ≤σdc时, 鞘层为单层的正离子鞘结构; 当σ>σdc时, 鞘层表现为双层的正离子鞘和电子鞘相连结构, 连接点对应于垂直于壁面方向上电势分布的拐点. 然而, 当σ进一步增大到0.999时, 鞘层转变为三层的正离子鞘-电子鞘-正离子鞘交替结构. 数值结果表明: 随着σ的增加, 电子鞘与离子鞘的连接点向远离壁面的方向移动, 电子鞘的厚度逐渐增加; 随着壁面出射电子能量系数a的增加, 近壁区鞘层的厚度也逐渐增加.To further reveal the characteristics of sheath near the dielectric wall in Hall thruster discharge channel, a one-dimensional fluid sheath model combined with the velocity distribution function of electron emitted from wall is used to study the influence of secondary electron emission yield (SEEy) σ on the characteristics of double sheath near wall. Analytic results show that because of the contribution of secondary electron flux to the density of sheath electron, the sheath presents single-layer positive ion sheath formation when σ is lower than a critical SEEy σdc, and also presents double-layers formation that joins with positive ion sheath and electron sheath when σ>σdc. However, when σ further increases to 0.999, the sheath presents the formation of three-layers that are alternated by positive ion sheath, electron sheath and positive ion sheath. Numerical results also indicate that with the increase of σ, the joining point between positive ion sheath and electron sheath moves away from wall, and the thickness of electron sheath increases obviously.
-
Keywords:
- Hall thruster /
- double sheath /
- secondary electron emission
[1] Kim V 1998 J. Propul Power. 14 736
[2] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1
[3] Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion conference (Electric Rocket Propulsion Society, Cleveland, OH), Paper No. IEPC 97 056
[4] Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397
[5] Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 3 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 58 3]
[6] Hobbs G D, Wesson J A 1967Plasma Phys. 9 85
[7] Schwager L A 1993 Phys. Fluids B 5 631
[8] Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506
[9] Ahedo E 2002 Phys. Plasmas 9 4340
[10] Ahedo E, Parra F I 2005 Phys. Plasmas 12 073503
[11] Ahedo E, DePablo V 2007 Phys. Plasmas 14 083501
[12] Yu D R, Qing S W, Wang X G, Ding Y J, Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese) [于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍 2011 60 025204]
[13] Duan P, Li X, E Peng, Qing S W 2011 Acta Phys. Sin. 60 125203 (in Chinese) [段萍, 李肸, 鄂鹏, 卿绍伟 2011 60 125203]
[14] Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. and Technol. 11 57
[15] Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 Phys. Plasmas 13 014501
[16] Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 IEEE Trans. Plasma Sci. 34 815
[17] Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 58 8432]
[18] Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York Consultants Bureau, New York) p241
[19] Taccogna F, Longo S, Capitelli M 2004 Vacuum 73 89
[20] Ahedo E, De Pablo V 2007 Phys. Plasmas 14 083501
[21] Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137
[22] Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299
-
[1] Kim V 1998 J. Propul Power. 14 736
[2] Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R1
[3] Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion conference (Electric Rocket Propulsion Society, Cleveland, OH), Paper No. IEPC 97 056
[4] Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397
[5] Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 3 (in Chinese) [于达仁, 张凤奎, 李鸿, 刘辉 2009 58 3]
[6] Hobbs G D, Wesson J A 1967Plasma Phys. 9 85
[7] Schwager L A 1993 Phys. Fluids B 5 631
[8] Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506
[9] Ahedo E 2002 Phys. Plasmas 9 4340
[10] Ahedo E, Parra F I 2005 Phys. Plasmas 12 073503
[11] Ahedo E, DePablo V 2007 Phys. Plasmas 14 083501
[12] Yu D R, Qing S W, Wang X G, Ding Y J, Duan P 2011 Acta Phys. Sin. 60 025204 (in Chinese) [于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍 2011 60 025204]
[13] Duan P, Li X, E Peng, Qing S W 2011 Acta Phys. Sin. 60 125203 (in Chinese) [段萍, 李肸, 鄂鹏, 卿绍伟 2011 60 125203]
[14] Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. and Technol. 11 57
[15] Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 Phys. Plasmas 13 014501
[16] Sydorenko D, Smolyakov A, Kaganovich I, Raitses Y 2006 IEEE Trans. Plasma Sci. 34 815
[17] Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳, 马锦秀, 李毅人, 张文贵 2009 58 8432]
[18] Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York Consultants Bureau, New York) p241
[19] Taccogna F, Longo S, Capitelli M 2004 Vacuum 73 89
[20] Ahedo E, De Pablo V 2007 Phys. Plasmas 14 083501
[21] Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137
[22] Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299
计量
- 文章访问数: 6478
- PDF下载量: 584
- 被引次数: 0