搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介质材料二次电子发射特性对微波击穿的影响

翁明 谢少毅 殷明 曹猛

引用本文:
Citation:

介质材料二次电子发射特性对微波击穿的影响

翁明, 谢少毅, 殷明, 曹猛

Influence of secondary electron emission characteristic of dielectric materials on microwave breakdown

Weng Ming, Xie Shao-Yi, Yin Ming, Cao Meng
PDF
HTML
导出引用
  • 以介质填充的平行板放电结构为例, 本文主要研究了介质填充后微波低气压放电和微放电的物理过程. 为了探究介质材料特性对微波低气压放电和微放电阈值的影响, 本文采用自主研发的二次电子发射特性测量装置, 测量了7种常见介质材料的二次电子发射系数和二次电子能谱. 依据二次电子发射过程中介质表面正带电的稳定条件, 计算了介质材料稳态表面电位与二次电子发射系数以及能谱参数的关系. 在放电结构中引入与表面电位相应的等效直流电场后, 依据电子扩散模型和微放电中电子谐振条件, 分别探讨了介质表面稳态表面电位的大小对微波低气压放电和微放电阈值的影响. 结果表明, 介质材料的二次电子发射系数以及能谱参数越大, 介质材料的稳态表面电位也越大, 对应的微波低气压放电和微放电阈值也越大. 所得结论对于填充介质的选择有一定的理论指导价值.
    For a microwave device filled with dielectrics, the secondary electron (SE) emission has a very important influence on the mechanism of microwave breakdown including low pressure discharge and multipactor. In this work, the SE yields (SEYs) and the SE energy spectra of seven kinds of dielectric materials are first measured and then used to examine their effects. In the positive charging process under electron irradiation, the surface potential of the dielectric layer trends to be steady with the SEY being one. Based on the measurement data, the steady surface potential is calculated under the charging stability condition. The steady surface potential is bigger for a bigger SEY. For a given SEY, the steady surface potential is found to be proportional to the peak energy Epeak of the SE energy spectrum. Furthermore, the effect of steady surface potential on low pressure discharge and multipactor are respectively studied for a parallel plate system filled with a dielectric layer. A static electric field related to the positive charging is introduced. The electron diffusion model in low pressure discharge process is modified by considering the static electric field. The electrons drift in a fixed direction under the action of static electric field, and the electron diffusion length decreases. Consequently, the effective electrons for low discharge decreases and the threshold microwave power increases. Therefore, a dielectric material with higher SEY and bigger Epeak is helpful in suspending the inhibition of low pressure discharge. Furthermore, the effect of steady electric field on multipactor is also explored. Two effects related to dielectric material and metal are analyzed in detail. The SE emission from dielectric material is held back by the steady electric field and some low energy electrons return back to the dielectric materials. The effective SEY thus decreases. On the other hand, the electric field reduces the landing electron energy on the metal, and the corresponding SEY also decreases. The electron oscillation condition with considering both microwave field and stead electric field is derived and the threshold values for microwave power of multipactor are calculated. The susceptibility curves corresponding to different materials are plotted. Our result may be used to choose the filling dielectric materials for a microwave device.
      通信作者: 曹猛, mengcao@mail.xjtu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61971342)
      Corresponding author: Cao Meng, mengcao@mail.xjtu.edu.cn
    [1]

    Yu M 2007 IEEE Microwave Mag. 8 88

    [2]

    常超 2018 科学通报 63 1390Google Scholar

    Chang C 2018 Chin. Sci. Bull. 63 1390Google Scholar

    [3]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat, Okhovvat M 2012 J. Commun. Eng. 1 18

    [4]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501Google Scholar

    [5]

    Ángela C, Germán T P, Carlos V, Benito G, Vicente E B 2008 IEEE Trans. Electron Devices 55 2505Google Scholar

    [6]

    Apostolos L S, Edén S, Michael M 2014 The 8th European Conference on Antennas and Propagation Hague, Netherlands, April 6−11, 2014 p1469

    [7]

    Germán T P, Ángela C, Benito G M, Isabel M, Carlos V, Vicente E B 2010 IEEE Trans. Electron Devices 57 1160Google Scholar

    [8]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508Google Scholar

    [9]

    翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东 2018 67 157901Google Scholar

    Zhai Y G, Wang R, Wang H G, Lin S, Chen K, Li Y D 2018 Acta Phys. Sin. 67 157901Google Scholar

    [10]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [11]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 67 177902Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 177902Google Scholar

    [12]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2017 66 207901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901Google Scholar

    [13]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Rev. Sci. Instrum. 85 036108Google Scholar

    [14]

    殷明, 翁明, 刘婉, 王芳, 曹猛 2019 西安交通大学学报 53 163

    Yin M, Weng M, Liu W, Wang F, Cao M 2019 Journal of Xi’an Jiaotong University 53 163

    [15]

    Weng M, Liu W, Yin M, Wang F, Cao M 2018 Chin. Phys. Lett. 35 047901Google Scholar

    [16]

    翁明, 胡天存, 曹猛, 徐伟军 2015 64 157901Google Scholar

    Weng M, Hu T C, Cao M, Xu W J 2015 Acta Phys. Sin. 64 157901Google Scholar

    [17]

    Insepov Z, Ivanov V, Frisch H 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 3315Google Scholar

    [18]

    Lin Y H, Joy D C 2005 Surf. Interface Anal. 37 895Google Scholar

    [19]

    Yong Y C, Thong J T L 2000 Scanning 22 161

    [20]

    Lisovskii V A 1999 Tech. Phys. 44 1282Google Scholar

    [21]

    Albert J H, Williams H B 1954 J. Appl. Phys. 25 417Google Scholar

    [22]

    Albert J H, Williams H B 1958 Phys. Rev. 112 681Google Scholar

  • 图 1  7种介质材料SEY的测量结果

    Fig. 1.  The measured SEY of seven kinds of dielectric materials.

    图 2  能谱分布示意图

    Fig. 2.  The diagram of the secondary electron energy spectrum.

    图 3  稳态表面电位与SEY及能谱参数Epeak的关系

    Fig. 3.  The relationships of the steady state surface potential with the SEY and the spectrum parameter Epeak.

    图 4  稳态表面电位与入射电子能量的关系

    Fig. 4.  The relationships between the steady state surface potential and the incident electron energy.

    图 5  介质填充的平板系统示意图

    Fig. 5.  The schematic diagram of parallel plate discharge system filled with dielectric layer.

    图 6  Vdc对敏感区域右边界中不同模式最低击穿点的影响

    Fig. 6.  The influence of Vdc on the minimum breakdown point at different pattern of the right boundary in suscep-tibility zone.

    图 7  Vdc对敏感区域右边界斜率的影响

    Fig. 7.  The influence of Vdc on the slope of the right boundary in susceptibility zone.

    表 1  7种介质材料的SEY参数

    Table 1.  SEY of seven kinds of dielectric materials

    样品PMMAAl2O3SiO2PTFEPEPIMica
    δm2.5177.3554.1492.2442.5641.8194.333
    Epm/eV278.9881.9285.4321.3279.5237.6335.4
    y1.671.671.501.551.611.671.55
    W1/eV56.858.835.075.456.270.238.6
    W2/eV1599250518045218519608377555
    下载: 导出CSV

    表 2  7种材料的能谱特性

    Table 2.  The characteristics of energy spectrum of seven kinds of materials.

    材料PMMAPTFEPEPIAl2O3SiO2Mica
    Epeak/eV4.2644.2034.0233.0872.8982.3762.988
    FWHM/eV14.05813.85113.28410.2069.7657.8579.882
    下载: 导出CSV
    Baidu
  • [1]

    Yu M 2007 IEEE Microwave Mag. 8 88

    [2]

    常超 2018 科学通报 63 1390Google Scholar

    Chang C 2018 Chin. Sci. Bull. 63 1390Google Scholar

    [3]

    Keneshloo R, Dadashzadeh G, Frotanpour A, Okhovvat, Okhovvat M 2012 J. Commun. Eng. 1 18

    [4]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501Google Scholar

    [5]

    Ángela C, Germán T P, Carlos V, Benito G, Vicente E B 2008 IEEE Trans. Electron Devices 55 2505Google Scholar

    [6]

    Apostolos L S, Edén S, Michael M 2014 The 8th European Conference on Antennas and Propagation Hague, Netherlands, April 6−11, 2014 p1469

    [7]

    Germán T P, Ángela C, Benito G M, Isabel M, Carlos V, Vicente E B 2010 IEEE Trans. Electron Devices 57 1160Google Scholar

    [8]

    Sorolla E, Belhaj M, Sombrin J, Puech J 2017 Phys. Plasmas 24 103508Google Scholar

    [9]

    翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东 2018 67 157901Google Scholar

    Zhai Y G, Wang R, Wang H G, Lin S, Chen K, Li Y D 2018 Acta Phys. Sin. 67 157901Google Scholar

    [10]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [11]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 67 177902Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 177902Google Scholar

    [12]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2017 66 207901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2017 Acta Phys. Sin. 66 207901Google Scholar

    [13]

    Weng M, Cao M, Zhao H J, Zhang H B 2014 Rev. Sci. Instrum. 85 036108Google Scholar

    [14]

    殷明, 翁明, 刘婉, 王芳, 曹猛 2019 西安交通大学学报 53 163

    Yin M, Weng M, Liu W, Wang F, Cao M 2019 Journal of Xi’an Jiaotong University 53 163

    [15]

    Weng M, Liu W, Yin M, Wang F, Cao M 2018 Chin. Phys. Lett. 35 047901Google Scholar

    [16]

    翁明, 胡天存, 曹猛, 徐伟军 2015 64 157901Google Scholar

    Weng M, Hu T C, Cao M, Xu W J 2015 Acta Phys. Sin. 64 157901Google Scholar

    [17]

    Insepov Z, Ivanov V, Frisch H 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 3315Google Scholar

    [18]

    Lin Y H, Joy D C 2005 Surf. Interface Anal. 37 895Google Scholar

    [19]

    Yong Y C, Thong J T L 2000 Scanning 22 161

    [20]

    Lisovskii V A 1999 Tech. Phys. 44 1282Google Scholar

    [21]

    Albert J H, Williams H B 1954 J. Appl. Phys. 25 417Google Scholar

    [22]

    Albert J H, Williams H B 1958 Phys. Rev. 112 681Google Scholar

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析.  , 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响.  , 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [3] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用.  , 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [4] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响.  , 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [5] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性.  , 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [6] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制.  , 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [7] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究.  , 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [8] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响.  , 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [9] 翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东. 介质部分填充平行平板传输线微放电过程分析.  , 2018, 67(15): 157901. doi: 10.7498/aps.67.20180351
    [10] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化.  , 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [11] 王丹, 贺永宁, 叶鸣, 崔万照. 金纳米结构表面二次电子发射特性.  , 2018, 67(8): 087902. doi: 10.7498/aps.67.20180079
    [12] 何鋆, 俞斌, 王琪, 白春江, 杨晶, 胡天存, 谢贵柏, 崔万照. 磁控溅射铂抑制镀银表面的二次电子发射.  , 2018, 67(8): 087901. doi: 10.7498/aps.67.20172740
    [13] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型.  , 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [14] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制.  , 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [15] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响.  , 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [16] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性.  , 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [17] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究.  , 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [18] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型.  , 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [19] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型.  , 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [20] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟.  , 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
计量
  • 文章访问数:  7240
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-01-29
  • 刊出日期:  2020-04-20

/

返回文章
返回
Baidu
map