搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究

曹涧秋 周尚德 刘鹏飞 黄值河 王泽锋 司磊 陈金宝

引用本文:
Citation:

辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究

曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝

Theoretical study on influence of radiation effect on threshold of transverse mode instability of Yb-doped fber amplifiers

Cao Jian-Qiu, Zhou Shang-De, Liu Peng-Fei, Huang Zhi-He, Wang Ze-Feng, Si Lei, Chen Jin-Bao
PDF
HTML
导出引用
  • 光纤放大器在辐照环境中具有良好的应用前景, 而模式不稳定(transverse mode instability, TMI)效应则是制约光纤放大器功率提升的重要因素. 因此, 针对辐照效应对于掺镱光纤放大器TMI阈值的影响, 开展了理论研究. 通过将辐致损耗引入光纤放大器的TMI理论模型, 率先给出了考虑辐照效应的TMI阈值表达式, 探讨了TMI阈值随辐射剂量的变化规律, 研究表明: 辐照效应对于TMI阈值的影响, 不仅与光纤的抗辐照性能有关, 还与光纤放大器的增益系数有关. 增益系数的增大, 会减缓TMI阈值随辐射剂量的衰减, 但也会导致TMI阈值的整体下降. 通过对比辐照效应对于TMI阈值和输出功率的影响, 结果发现, TMI阈值随辐致损耗衰减更快. 这也使得TMI效应成为辐照条件下光纤放大器输出功率的限制因素. 相关研究结果, 对于辐射条件下光纤放大器的设计及应用研究具有指导意义.
    Yb-doped fiber amplifiers and their applications in radiation environments have become more and more attractive in recent years. However, the radiation effect will cause damage to the Yb-doped fibers, which can give negative effect on the output properties of Yb-doped fiber amplifiers. In this work, the influence of radiation effect on the transverse mode instability (TMI) of Yb-doped fiber amplifier is studied. TMI can couple the single light from the fundamental mode to high-order mode, thereby degenerating the beam quality of fiber amplifier. TMI is considered a key limitation of power up-scaling of fiber amplifiers.In this work, the radiation effect on the TMI is studied theoretically, and a formula of TMI threshold is presented by taking the radiation-indued attenuation (RIA), the most important radiation effect for the TMI, into account. The formula is deduced by introducing the loss of signal light induced by RIA into the formerly reported TMI-threshold formula which can be obtained by analyzing the linear stability of the numerical model studying the TMI. Then, the relationship between the TMI and radiation dose is also given with the help of Power-Law describing the relationship between the RIA and radiation dose.With the formula, the variations of TMI threshold with the radiation dose and RIA are studied. It is found, as expected, that the TMI threshold decreases monotonically with the increase of RIA or radiation dose. Nevertheless, it is unexpectedly found that, to some extent, the gain coefficient of fiber amplifiers will also affect the radiation effect on TMI threshold. The results reveal that the increase of gain coefficient will lower the sensitivity of TMI threshold to the radiation dose. However, it is also implied that the gain coefficient cannot be too large because it can also make the TMI threshold lowered. Therefore, in order to maintain a high TMI threshold in a radiation environment, sufficient radiation resistance of Yb-doped fiber is essential.Because the RIA can affect not only the TMI threshold but also the output power or efficiency of Yb-doped fiber amplifier, the comparison between two effects of RIA is also discussed. It is found that the threshold of TMI is more sensitive to the radiation than to the output power or efficiency (see the figure attached below), which means that the TMI can exist in the irradiated Yb-doped fiber amplifier, although the output power is reduced because of RIA. This result can be verified by the experimental observation reported formerly. As a result, TMI can become a key limitation to the output power of Yb-doped fiber amplifier in radiation environments. The relevant results can provide significant guidance for the applications of Yb-doped fiber amplifiers in radiation environments.
  • 图 1  归一化TMI阈值随辐射剂量D、系数C1f的变化, 泵浦光和信号光波长分别为976 nm和1080 nm, 增益系数gsat为2 dB/m, f取值分别为0.5 (a), 0.7 (b), 0.9 (c), 1.1 (d)

    Fig. 1.  Variation of normalized TMI threshold with radiation dose D、 coefficients C1 and f, the pump wavelength and signal wavelength are 976 nm and 1080 nm respectively, and the gain coefficient gsat is 2 dB/m. The value of coefficient f are 0.5 (a), 0.7 (b), 0.9 (c), and 1.1 (d), respectively.

    图 2  归一化TMI阈值随辐射剂量D、系数C1f的变化, 泵浦光和信号光波长分别为976 nm和1080 nm, 系数f为0.7, 增益系数取值分别为1 dB/m (a), 3 dB/m (b), 5 dB/m (c), 10 dB/m (d)

    Fig. 2.  Variation of normalized TMI threshold with radiation dose D, coefficients C1 and f. The pump wavelength and signal wavelength are 976 nm and 1080 nm respectively, and the coefficient f is 0.7. The value of gain coefficient are 1 dB/m (a), 3 dB/m (b), 5 dB/m (c), and 10 dB/m (d), respectively.

    图 3  不同增益系数对应的TMI阈值随D的变化 (a) C1 = 0.002, f = 0.5; (b)C1 =0.012, f = 0.9, 纤芯直径为30 μm

    Fig. 3.  Variation of TMI threshold with D corresponding to various gain coefficient: (a) C1 = 0.002, f = 0.5; (b) C1 = 0.012, f = 0.9, the core diameter is 30 μm.

    图 4  归一化TMI阈值(实线、虚线和点划线)及输出功率比值(空心圆点)随辐致损耗的变化 (a)光纤长度为20 m; (b)光纤长度为10 m

    Fig. 4.  Variation of normalized TMI threshold (solid, dashed, and dotted) and output power ratio (hollow dots) with RIA: (a) Yb-doped fiber length is 20 m; (b) Yb-doped fiber length is 10 m.

    图 5  TMI阈值与输出功率随辐致损耗的变化.

    Fig. 5.  Variation of TMI threshold and output power with RIA.

    Baidu
  • [1]

    Girard S, Kuhnhenn J, Gusarov A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015Google Scholar

    [2]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Optics-UK 20 093001Google Scholar

    [3]

    Henschel H, Kohn O, Schmidt H U, Kirchof J, Unger S 1998 IEEE Trans. Nucl. Sci. 45 1552Google Scholar

    [4]

    Rose T S, Gunn D, Valley G C 2001 J. Lightw. Technol. 19 1918Google Scholar

    [5]

    Faustov A V, Gusarov A, Wuilpart M, Fotiadi A A, Liokumovich L B, Zolotovskiy I O, Tomashuk A L, Schoutheete T D, Mégret P 2013 IEEE Trans. Nucl. Sci. 60 2511Google Scholar

    [6]

    Ma J, Li M, Tan L Y, Zhou Y P, Yu S Y, Ran Q W 2009 Opt. Express 17 15571Google Scholar

    [7]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [8]

    Fox B P, Simmons-Potter K, Thomes W J, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618Google Scholar

    [9]

    Duchez J B, Mady F, Mebrouk Y, Ollier N, Benabdesselam M 2014 Opt. Lett. 39 5969Google Scholar

    [10]

    Xing Y B, Zhao N, Liao L, Wang Y B, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2015 Opt. Express 23 24236Google Scholar

    [11]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [12]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [13]

    Tan S, Li Y, Zhang H S, Wang X W, Jin J 2022 Chin. Phys. B 31 064211Google Scholar

    [14]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [15]

    Kher S, Chaubey S, Oak S M, Gusarov A 2013 IEEE Photonic. Technol. Lett. 25 2070Google Scholar

    [16]

    Fernandez A F, Brichard B, Berghmans F 2003 IEEE Photonic. Technol. Lett. 15 1428Google Scholar

    [17]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H-J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [18]

    Beier F, Möller F, Sattler B, Nold J, Liem A, Hupel C, Kuhn S, Hein S, Haarlammert N, Schreiber T, Eberhardt R, Tünnermann A 2018 Opt. Lett. 43 1291Google Scholar

    [19]

    Dong L 2013 Opt. Express 21 2642Google Scholar

    [20]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Quant. Elect. 24 1

    [21]

    Dong L 2022 J. Lightw. Technol. 40 4795Google Scholar

    [22]

    Xia N, Yoo S 2020 J. Lightw. Technol. 38 4478Google Scholar

    [23]

    Zervas M N 2017 Proc. SPIE 10083 100830M

    [24]

    Zervas M N 2018 APL Photonic. 4 022802

    [25]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [26]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 31 6690Google Scholar

    [27]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [28]

    Kelson I, Hardy A A 1998 IEEE J. Quant. Elect. 34 1570Google Scholar

    [29]

    Jiang Z, Marciante J R 2008 J. Opt. Soc. Am. B 25 247Google Scholar

    [30]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [31]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp254-255

    [32]

    Huang Z M, Shu Q, Luo Y, Tao R M, Feng X, Liu Y, Lin H H, Wang J J, Jing F 2021 J. Opt. Soc. Am. B 38 2945Google Scholar

    [33]

    Lezius M, Predehl K, Stower W, Turler A, Greiter M, Hoeschen C, Thirolf P, Assmann W, Habs D, Prokofiev A, Ekstrom C, Hansch T W, Holzwarth R 2012 IEEE Trans. Nucl. Sci. 59 425Google Scholar

    [34]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2005 63 200201

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201

    [35]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2008 IEEE J. Quant. Elect. 44 581Google Scholar

    [36]

    Fox B P, Simmons-Potter K, W. J. Thomes J, Meister D C, Bambha R P, Kliner D A V 2008 Proceedings of SPIE San Diego, California, USA, August 10, 2008

    [37]

    Hecht J 2009 Laser Focus World 12 52

    [38]

    Wang Y S, Peng W J, Liu H, Yang X B, Yu H M, Wang Y, Wang J, Feng Y J, Sun Y H, Ma Y, Gao Q S, Tang C 2023 Opt. Lett. 48 2909Google Scholar

  • [1] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用.  , doi: 10.7498/aps.73.20240895
    [2] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应.  , doi: 10.7498/aps.72.20222100
    [3] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器.  , doi: 10.7498/aps.71.20221433
    [4] 彭海波, 刘枫飞, 张冰焘, 张晓阳, 孙梦利, 杜鑫, 王鹏, 袁伟, 王铁山, 王建伟. Xe离子束辐照硼硅酸盐玻璃和石英玻璃效应对比研究.  , doi: 10.7498/aps.67.20172117
    [5] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究.  , doi: 10.7498/aps.66.226101
    [6] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究.  , doi: 10.7498/aps.66.064201
    [7] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究.  , doi: 10.7498/aps.63.085202
    [8] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响.  , doi: 10.7498/aps.63.200201
    [9] 孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘. 不同剂量率下锗硅异质结双极晶体管电离损伤效应研究.  , doi: 10.7498/aps.62.196104
    [10] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究.  , doi: 10.7498/aps.61.114203
    [11] 高晖, 罗顺忠, 张华明, 王和义. 基于镍-63硅基辐伏能量转换结构初探.  , doi: 10.7498/aps.61.176101
    [12] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响.  , doi: 10.7498/aps.61.116301
    [13] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器.  , doi: 10.7498/aps.60.124207
    [14] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应.  , doi: 10.7498/aps.59.1258
    [15] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究.  , doi: 10.7498/aps.58.3897
    [16] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应.  , doi: 10.7498/aps.58.2737
    [17] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究.  , doi: 10.7498/aps.57.6335
    [18] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究.  , doi: 10.7498/aps.57.7088
    [19] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器.  , doi: 10.7498/aps.55.4139
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应.  , doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  176
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-09
  • 修回日期:  2024-08-18
  • 上网日期:  2024-09-12

/

返回文章
返回
Baidu
map