Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression

Jiang Zhao-Xiu Xin Ming-Zhi Shen Hai-Ting Wang Yong-Gang Nie Heng-Chang Liu Yu-Sheng

Citation:

Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression

Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Four kinds of unpoled lead zirconate titanate (PZT95/5) ferroelectric ceramics were fabricated in a range of different porosity levels by systematic additions of added pore formers. By using the non-contact digital image correlation (DIC) optical technique to measure the full-field strain, the response of unpoled PZT95/5 ferroelectric ceramics to statically applied uniaxial stresses was investigated. The influences of porosities on the mechanical behavior, domain switching, and phase transformation of the porous unpoled PZT95/5 ferroelectric ceramics were explored. All the measured stress versus strain curves for the tested porous unpoled PZT95/5 ferroelectric ceramic samples can be divided into three stages: the initial linear elastic region, the approximate plateau region, and the second linear elastic region, similar to the behavior of foam or honeycomb materials. However, the deformation mechanism of porous unpoled PZT95/5 ferroelectric ceramics should be attributed to the domain switching and phase transformation processes, but not related to the collapse of voids. With the increase of porosity, the elastic modulus, fracture strength and fracture strain of the porous unpoled PZT95/5 ferroelectric ceramics would decrease. Effect of dispersed voids does not improve plasticity of the porous unpoled PZT95/5 ferroelectric ceramics, which is mainly attributed to no effect of the pores on the obstacle and proliferation of crack propagation during the axial splitting failure processes. Critical stresses of the domain switching and phase transformation decrease linearly with increasing porosity. The macroscopic critical volumetric strain needed for phase transformation is independent of the porosity in the unpoled PZT95/5 ferroelectric ceramics.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272164, 11472142), and the K. C. Wong Magna Foundation and K. C. Wong Education Foundation of Ningbo University.
    [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797

    [2]

    Wang Y L 2003 Properties and Application of Functional Ceramics(Beijing: Science Press) (in Chinese) [王永龄 2003 功能陶瓷性能与应用(北京: 科学出版社)]

    [3]

    Zeuch D H, Montgomery S T and Holcomb D J 2000 J. Mater. Res. 15 689

    [4]

    Zeuch D H, Montgomery S T and Holcomb D J 1999 J. Mater. Res. 14 1814

    [5]

    Avdeev M, Jorgensen J D, Short S, Samara G A, Venturini E L, Yang P, Morosin B 2006 Phys. Rev. B 73 064105

    [6]

    Setchell R E 2005 J. Appl. Phys. 97 013507

    [7]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [8]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Jo H R, Valadez J C, Lynch C S 2014 Appl. Phys. Lett. 104 212901

    [9]

    Zhang F P, He H L, Liu G M, Liu Y S, Yu Y, Wang Y G 2013 J. Appl. Phys. 113 183501

    [10]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 60 057701]

    [11]

    Du J M, Zhang Y, Zhang F P, He H L, Wang H Y 2006 Acta Phys. Sin. 55 2584 (in Chinese) [杜金梅, 张毅, 张福平, 贺红亮, 王海晏 2006 55 2584]

    [12]

    Nie H C, Dong X L, Feng N B, Chen X F, Wang G S, Gu Y, He H L, Liu Y S 2011 Mater. Res. Bull. 46 1243

    [13]

    Feng N B, Gu Y, Liu Y S, Nie H C, Chen X F, Wang G S, He H L, Dong X L 2010 Acta Phys. Sin. 59 8897 (in Chinese) [冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林 2010 59 8897]

    [14]

    Zeng T, Dong X L, He H L, Chen X F, Yao C H 2007 Phys. Stat. Sol. 204 1216

    [15]

    Nie H C, Dong X L, Chen X F, Wang G S, He H L 2014 Mater. Res. Bull. 51 167

    [16]

    Lan C H, Peng Y F, Long J D, Wang Q, Wang W D 2011 Chin. Phys. Lett. 28 088301

    [17]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [18]

    Tuttle B A, Yang P, Gieske J H, Voigt J A, Scofield T W, Zeuch D H, Olson W R 2001 J. Am. Ceram. Soc. 84 1260

    [19]

    Wang Z Z, Jiang Y X, Zhang P, Wang X Z, He H L 2014 Chin. Phys. Lett. 31 077703

    [20]

    Sutton M A, Orteu J J, Schreier HW 2009 Imgae Correlation for Shape, Motion, and Deformation Measurements p81(New York: Springer)

    [21]

    Gibson L J, Ashby M F 1997 Cellular solids: structure and properties (Second Edition) p83(Cambridge: Press Syndicate of the University of Cambridge)

    [22]

    Li H J, Liu F, Wang T C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 1339

    [23]

    Webber K G, Aulbach E A, Key T, Marsilius M, Granzow T, Rödel J 2009 Acta Mater. 57 4614

    [24]

    Fang D L, Liu J X 2008 Fracture Mechanics of Piezoelectric and Ferroelectric Solids p21( Beijing: Press of University of Tsinghua) (in Chinese) [方岱宁, 刘金喜 2008 压电与铁电体的断裂力学(北京: 清华大学出版社) 第21页]

    [25]

    Demetriou M D, Launey M E, Garrett G 2011 Nature Mater. 10 123

    [26]

    Wada T, Inoue A, and Greer A L 2005 Appl. Phys. Lett. 86 251907

  • [1] Chong Tao, Wang Gui-Ji, Tan Fu-Li, Zhao Jian-Heng, Tang Zhi-Ping. Phase transformation kinetics of zirconium under ramp wave loading with different windows. Acta Physica Sinica, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [2] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [3] Jiang Zhao-Xiu, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Effects of poling state and direction on domain switching and phase transformation of Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [4] Song Ping, Cai Ling-Cang, Li Xin-Zhu, Tao Tian-Jiong, Zhao Xin-Wen, Wang Xue-Jun, Fang Mao-Lin. Sound velocity and phase transition for low porosity tin at high pressure. Acta Physica Sinica, 2015, 64(10): 106401. doi: 10.7498/aps.64.106401
    [5] Lu Lu, Ji Hong-Fei, Guo Ge-Pu, Guo Xia-Sheng, Tu Juan, Qiu Yuan-Yuan, Zhang Dong. Ultrasonic enhancement of the porosity of alginate scaffold. Acta Physica Sinica, 2015, 64(2): 024301. doi: 10.7498/aps.64.024301
    [6] Ye Feng-Xia, Chen Yan, Yu Peng, Luo Qiang, Qu Shou-Jiang, Shen Jun. Structured analysis of iron-based amorphous alloy coating deposited by AC-HVAF spray. Acta Physica Sinica, 2014, 63(7): 078101. doi: 10.7498/aps.63.078101
    [7] Liu Ben-Qiong, Xie Lei, Duan Xiao-Xi, Sun Guang-Ai, Chen Bo, Song Jian-Ming, Liu Yao-Guang, Wang Xiao-Lin. First principles studies of phase transition and mechanical properties of uranium. Acta Physica Sinica, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [8] Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun. Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading. Acta Physica Sinica, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [9] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [10] Zhou Ting-Ting, Huang Feng-Lei. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations. Acta Physica Sinica, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [11] Jiang Dong-Dong, Gu Yan, Feng Yu-Jun, Du Jin-Mei. Phase transformation and dielectric properties of lead zirconate stannate titanate ferroelectric ceramic under hydraulic compression. Acta Physica Sinica, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [12] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [14] Feng Ning-Bo, Gu Yan, Liu Yu-Sheng, Nie Heng-Chang, Chen Xue-Feng, Wang Gen-Shui, He Hong-Liang, Dong Xian-Lin. Porosity effects on depoling characteristics of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics under shock wave load. Acta Physica Sinica, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [15] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] Ming Bao-Quan, Wang Jin-Feng, Zang Guo-Zhong, Wang Chun-Ming, Gai Zhi-Gang, Du Juan, Zheng Li-Mei. X-ray diffraction and phase transition analysis for (K, Na)NbO3-based lead-free piezoelectric ceramics. Acta Physica Sinica, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [17] Zhang Xin-Ming, Liu Jia-Qi, Liu Ke-An. Porosity inversion of 1-D two-phase medium with wavelet multiscale method. Acta Physica Sinica, 2008, 57(2): 654-660. doi: 10.7498/aps.57.654
    [18] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] LIU PENG, YANG TONG-QING, ZHANG LIANG-YING, YAO XI. INVESTIGATION OF DIFFUSED PHASE TRANSITION AND POLAR RELAXATION IN Pb(Zr,Sn,Ti)O3 ANTIFERROELECTRIC CERAMICS. Acta Physica Sinica, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
Metrics
  • Abstract views:  5974
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2014
  • Accepted Date:  31 December 2014
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map