Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron

Li Jun Wu Qiang Yu Ji-Dong Tan Ye Yao Song-Lin Xue Tao Jin Ke

Citation:

Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron

Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The dynamic response of iron, especially the phase transformation from the ambient body-centered-cubic (bcc) up-phase to the hexagonal-closed packed (hcp) -phase, has been studied extensively in the last 60 years due to its importance in industry and its role as a main constituent of Earth. Recently, this topic has attracted a lot of attention in the aspects of the kinetic characteristics and mechanism of the shock-induced phase transition, including orientation-, temperature-, time- and strain rate-dependences. But only a few data have been published on the crystal orientation effect. The systematic experimental results to identify the predictions of the non-equilibrium molecular dynamics (NEMD) simulation are still lacking. For this reason, we study the shock responses of the [100], [110] and [111] orientated iron single crystals by using a three-independent-sample method in one shot. Unlike previously reported [001] single-crystal iron, a clear three-wave structure consisting of a PEL wave (elastic wave), a P1 wave (plastic wave) and a P2 wave (phase transition wave) is observed in the measured wave profiles for all single-crystal iron samples. The elastic-plastic transition process is in accordance with the numerical simulation of dislocation-based constitutive model for visco-plastic deformation. It is found that the values of Hugoniot elastic limit HEL ((111)/(HEL) (110)/(HEL) (100)/(HEL)) are greater than 6 GPa and dependent on the initial crystal orientation. Such a high yield strength is consistent with the nanosecond X-ray diffraction of [001] single-crystal iron where the uniaxial compression of the lattice has been observed at a shock pressure of about 5.4 GPa. Moreover, the onset pressures PPT for the phase transition are obtained to be 13.890.57 GPa, 14.530.53 GPa and 16.050.67 GPa along the [100], [110], and [111] directions, respectively. Based on these results, it is concluded that the crystal orientation effect of PPT is consistent with the reported NEMD calculations. However, the measured values are lower. In addition, the transition strain-ratio of singlecrystal iron is found to be higher than that of polycrystalline iron, reflecting the influence of the transformation kinetics (i.e., transformation kinetics coefficient) on the wave profile evolution. Our observations indicate that the strong coupling between plasticity and phase transition in single crystal iron might be a key point for understanding the origin of the phase transition and also for ending the controversy of metastable -phase. The fine multi-wave profiles also provide an important experimental reference for improving the phase field modeling of shock-induced phase transition.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11602251, 11302202) and the Science Challenge Project, China (Grant No. TZ2016001).
    [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

  • [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

  • [1] Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying. Influence of iron anisotropy on phase transition near grain boundary under shock. Acta Physica Sinica, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] Hua Ying-Xin, Liu Fu-Sheng, Geng Hua-Yun, Hao Long, Yu Ji-Dong, Tan Ye, Li Jun. Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading. Acta Physica Sinica, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [4] Wang Chun-Jie, Wang Yue, Gao Chun-Xiao. Grain and grain boundary characteristics and phase transition of ZnS nanocrystallines under pressure. Acta Physica Sinica, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [5] Li Tian-Jing, Cao Xiu-Xia, Tang Shi-Hui, He Lin, Meng Chuan-Min. Crystal-orientation effects of the optical extinction in shocked Al2O3: a first-principles investigation. Acta Physica Sinica, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [6] Ma Tong, Xie Hong-Xian. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction. Acta Physica Sinica, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [7] Jiang Zhao-Xiu, Xin Ming-Zhi, Shen Hai-Ting, Wang Yong-Gang, Nie Heng-Chang, Liu Yu-Sheng. Mechanical properties and phase transformation of porous unpoled Pb(Zr0.95Ti0.05)O3 ferroelectric ceramics under uniaxial compression. Acta Physica Sinica, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] Qu Yan-Dong, Kong Xiang-Qing, Li Xiao-Jie, Yan Hong-Hao. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles. Acta Physica Sinica, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [9] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [10] Zhou Ting-Ting, Huang Feng-Lei. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations. Acta Physica Sinica, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [11] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] Liang Xiao-Lin, Gong Yue-Qiu, Liu Zhi-Zhuang, Lü Ye-Gang, Zheng Xue-Jun. Effect of external electric field on phase transitions of ferroelectric thin films. Acta Physica Sinica, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] Shao Jian-Li, He An-Min, Duan Su-Qing, Wang Pei, Qin Cheng-Sen. Atomistic simulation of the bcc—hcp transition in iron driven by uniaxial strain. Acta Physica Sinica, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [14] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [15] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Hu Jian-Gang, Wang Zhen-Xia, Yong Zhen-Zhong, Li Qin-Tao, Zhu Zhi-Yuan. Phase transition from amorphous carbon to diamond nanocrystalline induced by 40Ar+. Acta Physica Sinica, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [19] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] LIU PENG, YANG TONG-QING, ZHANG LIANG-YING, YAO XI. INVESTIGATION OF DIFFUSED PHASE TRANSITION AND POLAR RELAXATION IN Pb(Zr,Sn,Ti)O3 ANTIFERROELECTRIC CERAMICS. Acta Physica Sinica, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
Metrics
  • Abstract views:  6986
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2017
  • Accepted Date:  12 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map