搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硬X射线调制望远镜低能探测器量子效率标定

朱玥 张子良 杨彦佶 薛荣峰 崔苇苇 陆波 王娟 陈田祥 王于仨 李炜 韩大炜 霍嘉 胡渭 李茂顺 张艺 祝宇轩 刘苗 赵晓帆 陈勇

引用本文:
Citation:

硬X射线调制望远镜低能探测器量子效率标定

朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇

Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite

Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong
PDF
导出引用
  • 低能X射线望远镜是硬X射线调制望远镜卫星的主要载荷之一,探测器采用CCD236.探测器的量子效率会影响能谱拟合和绝对流量,有必要对其进行标定.利用55Fe放射源,以硅漂移探测器为标准探测器,标定了CCD236在Mn-Kα(5.899 keV)和Mn-Kβ(6.497 keV)能量点处的量子效率,此能段在Fe线附近,对X射线天文观测有重要价值.考虑探测器的分裂事例后,Mn-Kα和Mn-Kβ处的量子效率分别为71%和62%.在-95-30℃工作温度范围内,CCD量子效率与温度无关.利用CCD236的结构及实测的量子效率,不考虑沟阻影响,得到耗尽层厚度为38 μm.对CCD236施加不同的电压,其量子效率基本不变,表明其在两相驱动下高低电平的耗尽层厚度相等,进而说明CCD236一直工作在深耗尽状态,其耗尽层到了外延层和衬底层边界,已达最大值.
    Low energy X-ray telescope, working over 0.7-15 keV energy band, is one of the main payloads in the hard X-ray modulation telescope satellite. The primary scientific objectives are to survey large sky area to investigate galactic X-ray transient sources as well as the cosmic X-ray background, and to observe X-ray binaries or black holes for studying the dynamics and emission mechanism in strong gravitational or magnetic field. The detector of low energy X-ray telescope is CCD236, a new generation of swept charge device, which has good time and energy resolution. Quantum efficiency (QE) of the detector has a crucial influence on X-ray spectrum fitting and absolute luminosity calculation. To provide valuable scientific data, QE should be calibrated in detail. In this paper, QE calibration is accomplished with respect to a silicon drift detector (SDD), using an Fe-55 radioactive source, at energy points Mn-Kα (5.899 keV) and Mn-Kβ (6.497 keV). The energies of Mn-Kα and Mn-Kβ are near that of iron-K, which is an important line in X-ray observation. Additionally, Mn-Kα and Mn-Kβ X-ray will partially pass through the depletion region of CCD236, and these energy points can be used to measure the depletion thickness. This experiment is set up in a vacuum cooling chamber. The X-ray source perpendicularly illuminates SDD and CCD236 through a small hole, whose area is far less than those of two detectors; therefore, QE measurements are irrelevant to neither the distance nor the azimuth angle between the X-ray source and the detector. For CCD236, split events should be corrected. Energy spectra of SDD and CCD236 are fitted with two Gaussian distributions, respectively, to obtain peak positions and standard variations of Mn-Kα and Mn-Kβ. With known structure of SDD, the QE of CCD236 can be calculated. QE values at Mn-Kα and Mn-Kβ are 71% and 62%, respectively. QE and temperature are uncorrelated with each other in a temperature range from -95 ℃ to -30 ℃. According to the specific structure of CCD236 and the measured QE, without considering the effect of channel stop, the best-fit thickness of depletion region is obtained to be 38 μm. When CCD236 is applied with different driving or substrate voltages, no obvious variation of QE is observed. It indicates that the thickness values of depletion region with high and low level voltages are equal. Furthermore, it shows that working CCD236 is deep depleted, and the thickness of depletion region will not change because it reaches its maximum, the edge of epitaxial layer and substrate layer.
      通信作者: 陈勇, ychen@ihep.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11403024)和中国科学院知识创新工程重要方向性项目(批准号:KZCX2-EW-J01)资助的课题.
      Corresponding author: Chen Yong, ychen@ihep.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403024) and the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (Grant No. KZCX2-EW-J01).
    [1]

    Li T P, Wu M 2008 Physics 37 648 (in Chinese) [李惕碚, 吴枚 2008 物理 37 648]

    [2]

    Lu F J, Xu Y P, Zhang F, Liu H W 2016 Mod. Phys. 4 4 (in Chinese) [卢方军, 徐玉朋, 张帆, 刘红薇 2016 现代物理知识 4 4]

    [3]

    Chen Y, Cui W W 2016 Mod. Phys. 4 25 (in Chinese) [陈勇, 崔苇苇 2016 现代物理知识 4 25]

    [4]

    Holland A, Pool P 2008 Proceedings of SPIE: High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ Marseille, June 23-27, 2008 p7021

    [5]

    Wang Y S, Chen Y, Xu Y P, Wang J, Cui W W, Li W, Han D W, Zhang Z L, Chen T X, Li C K 2010 Chin. Phys. C 34 1812

    [6]

    Yang Y J, Lu J B, Wang Y S, Chen Y, Xu Y P, Cui W W, Li W, Li Z W, Li M S, Liu X Y 2014 Chin. Phys. C 38 60

    [7]

    Murray N, Holland A, Smith D, Gow J, Pool P, Burt D 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 604 180

    [8]

    Yang Y J 2014 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨彦佶 2014 博士学位论文 (长春: 吉林大学)]

    [9]

    Smith P, Gow J, Murray N, Tutt J, Soman M, Holland A 2014 J. Instrum. 9 P04019

    [10]

    Liu X Y, Yang Y J, Chang Z, Xiao J, Wang Y S, Cui W W, Yao K, Fu Y Q, Chen T X, Hu W, Chen Y 2016 Nucl. Electron. Detect Technol. 36144 (in Chinese) [刘晓艳, 杨彦佶, 常治, 肖君, 王于仨, 崔苇苇, 姚科, 傅云清, 陈田祥, 胡渭, 陈勇 2016 核电子学与探测技术 36 144]

    [11]

    Wang Y S, Chen Y, Xu Y P, Yang Y J, Cui W W, Li M S, Liu X Y, Wang J, Han D W, Chen T X, Li C K, Huo J, Li Z W, Li W, Hu W, Zhang Y, LU B, Zhu Y, Liu Y, Wu D, Sun Q R, Zhang Z L 2012 Chin. Phys. C 36 991

    [12]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p141

    [13]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p173

    [14]

    Gow J 2009 Ph. D. Dissertaton (London: Brunel University)

    [15]

    Kocher D C 1981 Int. J. Radiat. Biol. 41 305

    [16]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Maria, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 64 194208]

    [17]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p417 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第417页]

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p616 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第616页]

    [19]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p75

    [20]

    Pavlov G, Nousek J 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 428 348

    [21]

    Han D K 2009 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [韩德凯 2009 硕士学位论文 (长春: 吉林大学)]

    [22]

    Levato T, Labate L, Galimberti M, Giulietti A, Giulietti D, Gizzi L A 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 592 346

    [23]

    Gow J, Smith P, Pool P, Hall D, Holland A, Murray N 2015 J. Instrum. 10 C01037

    [24]

    Athiray P S, Sreekumar P, Narendranath S, Gow J 2015 Astronomy & Astrophysics 583

  • [1]

    Li T P, Wu M 2008 Physics 37 648 (in Chinese) [李惕碚, 吴枚 2008 物理 37 648]

    [2]

    Lu F J, Xu Y P, Zhang F, Liu H W 2016 Mod. Phys. 4 4 (in Chinese) [卢方军, 徐玉朋, 张帆, 刘红薇 2016 现代物理知识 4 4]

    [3]

    Chen Y, Cui W W 2016 Mod. Phys. 4 25 (in Chinese) [陈勇, 崔苇苇 2016 现代物理知识 4 25]

    [4]

    Holland A, Pool P 2008 Proceedings of SPIE: High Energy, Optical, and Infrared Detectors for Astronomy Ⅲ Marseille, June 23-27, 2008 p7021

    [5]

    Wang Y S, Chen Y, Xu Y P, Wang J, Cui W W, Li W, Han D W, Zhang Z L, Chen T X, Li C K 2010 Chin. Phys. C 34 1812

    [6]

    Yang Y J, Lu J B, Wang Y S, Chen Y, Xu Y P, Cui W W, Li W, Li Z W, Li M S, Liu X Y 2014 Chin. Phys. C 38 60

    [7]

    Murray N, Holland A, Smith D, Gow J, Pool P, Burt D 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 604 180

    [8]

    Yang Y J 2014 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [杨彦佶 2014 博士学位论文 (长春: 吉林大学)]

    [9]

    Smith P, Gow J, Murray N, Tutt J, Soman M, Holland A 2014 J. Instrum. 9 P04019

    [10]

    Liu X Y, Yang Y J, Chang Z, Xiao J, Wang Y S, Cui W W, Yao K, Fu Y Q, Chen T X, Hu W, Chen Y 2016 Nucl. Electron. Detect Technol. 36144 (in Chinese) [刘晓艳, 杨彦佶, 常治, 肖君, 王于仨, 崔苇苇, 姚科, 傅云清, 陈田祥, 胡渭, 陈勇 2016 核电子学与探测技术 36 144]

    [11]

    Wang Y S, Chen Y, Xu Y P, Yang Y J, Cui W W, Li M S, Liu X Y, Wang J, Han D W, Chen T X, Li C K, Huo J, Li Z W, Li W, Hu W, Zhang Y, LU B, Zhu Y, Liu Y, Wu D, Sun Q R, Zhang Z L 2012 Chin. Phys. C 36 991

    [12]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p141

    [13]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p173

    [14]

    Gow J 2009 Ph. D. Dissertaton (London: Brunel University)

    [15]

    Kocher D C 1981 Int. J. Radiat. Biol. 41 305

    [16]

    Zeng J Z, Li Y D, Wen L, He C F, Guo Q, Wang B, Maria, Wei Y, Wang H J, Wu D Y, Wang F, Zhou H 2015 Acta Phys. Sin. 64 194208 (in Chinese) [曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航 2015 64 194208]

    [17]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p417 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第417页]

    [18]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (2nd Ed.) (Beijing: Science Press) p616 (in Chinese) [朱永生 2006 实验物理中的概率和统计 (第二版) (北京: 科学出版社) 第616页]

    [19]

    Janesick J 2001 Scientific Charge Coupled Device (Washington: SPIE Press) p75

    [20]

    Pavlov G, Nousek J 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 428 348

    [21]

    Han D K 2009 M. S. Dissertation (Changchun: Jilin University) (in Chinese) [韩德凯 2009 硕士学位论文 (长春: 吉林大学)]

    [22]

    Levato T, Labate L, Galimberti M, Giulietti A, Giulietti D, Gizzi L A 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 592 346

    [23]

    Gow J, Smith P, Pool P, Hall D, Holland A, Murray N 2015 J. Instrum. 10 C01037

    [24]

    Athiray P S, Sreekumar P, Narendranath S, Gow J 2015 Astronomy & Astrophysics 583

  • [1] 李旭东, 姜增公, 顾强, 张猛, 林国强, 赵明华, 郭力. 基于制备成功率和量子效率提升的Te断续、Cs持续沉积制备Cs-Te光阴极.  , 2022, 71(17): 178501. doi: 10.7498/aps.71.20220818
    [2] 乔建良, 徐源, 高有堂, 牛军, 常本康. 反射式变掺杂负电子亲和势GaN光电阴极量子效率研究.  , 2017, 66(6): 067903. doi: 10.7498/aps.66.067903
    [3] 曾骏哲, 李豫东, 文林, 何承发, 郭旗, 汪波, 玛丽娅, 魏莹, 王海娇, 武大猷, 王帆, 周航. 质子与中子辐照对电荷耦合器件暗信号参数的影响及其效应分析.  , 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [4] 文林, 李豫东, 郭旗, 任迪远, 汪波, 玛丽娅. 质子辐照导致科学级电荷耦合器件电离效应和位移效应分析.  , 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [5] 曾骏哲, 何承发, 李豫东, 郭旗, 文林, 汪波, 玛丽娅, 王海娇. 电荷耦合器件在质子辐照下的粒子输运仿真与效应分析.  , 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [6] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究.  , 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [7] 刘宾礼, 刘德志, 罗毅飞, 唐勇, 汪波. 基于电压电流的IGBT关断机理与关断时间研究.  , 2013, 62(5): 057202. doi: 10.7498/aps.62.057202
    [8] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究.  , 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [9] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究.  , 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [10] 乔建良, 常本康, 钱芸生, 杜晓晴, 王晓晖, 郭向阳. 反射式NEA GaN光电阴极量子效率恢复研究.  , 2011, 60(1): 017903. doi: 10.7498/aps.60.017903
    [11] 王德江, 匡海鹏. 模拟增益对电荷耦合器件信噪比与动态范围影响的实验研究.  , 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [12] 邓懿, 赵德刚, 吴亮亮, 刘宗顺, 朱建军, 江德生, 张书明, 梁骏吾. 器件参数对GaN基n+-GaN/i-Alx Ga1-xN/n+-GaN结构紫外和红外双色探测器中紫外响应的影响.  , 2010, 59(12): 8903-8909. doi: 10.7498/aps.59.8903
    [13] 乔建良, 常本康, 杜晓晴, 牛军, 邹继军. 反射式负电子亲和势GaN光电阴极量子效率衰减机理研究.  , 2010, 59(4): 2855-2859. doi: 10.7498/aps.59.2855
    [14] 毛清华, 江风益, 程海英, 郑畅达. p-AlGaN电子阻挡层Al组分对Si衬底绿光LED性能影响的研究.  , 2010, 59(11): 8078-8082. doi: 10.7498/aps.59.8078
    [15] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析.  , 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [16] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究.  , 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [17] 杜晓晴, 常本康. 负电子亲和势光电阴极量子效率公式的修正.  , 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [18] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.  , 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [19] 邹继军, 常本康, 杨 智. 指数掺杂GaAs光电阴极量子效率的理论计算.  , 2007, 56(5): 2992-2997. doi: 10.7498/aps.56.2992
    [20] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法.  , 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
计量
  • 文章访问数:  6196
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-01
  • 修回日期:  2017-03-16
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map