Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells

Li Chang Xue Wei Han Chang-Feng Qian Lei Zhao Su-Ling Yu Zhi-Nong Zhang Ting Wang Ling-Xue

Citation:

Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells

Li Chang, Xue Wei, Han Chang-Feng, Qian Lei, Zhao Su-Ling, Yu Zhi-Nong, Zhang Ting, Wang Ling-Xue
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A common phenomenon of polymer solar cells with metal oxide electron-transport layers (ETLs), known as “light-soaking” issue, is that the as-prepared device exhibits an anomalous S-shaped J-V characteristic, resulting in an extremely low fill factor (FF) and thus a poor power conversion efficiency. However, the S-shape disappears upon white light illumination with UV spectral components, meanwhile the performance parameters of the device recover the normal values eventually. This behavior appears to be of general validity for various metal oxide layers regardless of the synthesis and fabricating processes. Its origin is still under debate, while the ETL interface problems have generally been claimed to be the underlying reason so far. In this paper, both conventional and inverted cells with using ZnO nanoparticles (NPs) as ETL are fabricated to clarify the interface effect of the ETL on the light soaking procedure. The inverted device shows a typical light-soaking issue with an initial FF less than 20% as expected, whereas the J-V curves of the conventional cell remain regular shapes throughout the test. This result indicates that the ITO/ZnO interface is a key reason of S-shaped J-V characteristics, which is further verified via the use of Cs2CO3/ZnO ETL. The insert of Cs2CO3 layer isolates the ITO electrode from contacting with ZnO layer, and the kink disappears in the as-prepared device with this bi-layered ETL inverted structure. Our explanation for the result above is that the oxygen impurities absorbed onto the surface of ZnO NPs during fabrication process, behave as strong electron traps, and thus increasing the width of the energy barrier (EB) at the interface of ITO/ZnO. Subsequently, photogenerated electrons accumulate in the ZnO layer adjacent to the interface, resulting in extremely poor performance. Upon white light illumination, however, the trap sites are filled by photogenerated carriers within the ZnO layer, and therefore narrowing the EB. As the barrier width becomes thin enough to be freely tunneled through, a good selectivity behavior of ZnO ETL is reached, leading to a fully remarkable recovery in device performances.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904002, 51462003) and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No. 20110432001).
    [1]

    Service R F 2011 Science 332 293

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Yang Q Q, Yang D B, Zhao S L, Huang Y, Xu Z, Gong W, Fan X, Liu Z F, Huang Q Y, Xu X R 2014 Chin. Phys. B 23 038405

    [6]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 63 068402]

    [7]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J B, Gao J, Hong Z R, Yang Y 2014 Adv. Mater. 26 5670

    [8]

    Krebs F C, Norrman K 2007 Prog. Photovolt.: Res. Appl. 15 697

    [9]

    de Jong M P, van IJzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255

    [10]

    Kyaw A K K, Sun X W, Jiang C Y, Lo G Q, Zhao D W, Kwong D L 2008 Appl. Phys. Lett. 93 221107

    [11]

    Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465

    [12]

    Hau S K, Yip H L, Acton O, Baek N S, Ma H, Jen A K Y 2008 J. Mater. Chem. 18 5113

    [13]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [14]

    Tan Z A, Zhang W Q, Zhang Z G, Qian D P, Huang Y, Hou J H, Li Y F 2012 Adv. Mater. 24 1476

    [15]

    Schmidt H, Zilberberg K, Schmale S, Flgge H, Riedl T, Kowalsky W 2010 Appl. Phys. Lett. 96 243305

    [16]

    Trost S, Zilberberg K, Behrendt A, Riedl T 2012 J. Mater. Chem. 22 16224

    [17]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [18]

    Sondergaard R, Helgesen M, Jorgensen M, Krebs F C 2011 Adv. Energy Mater. 1 68

    [19]

    Kim C S, Lee S S, Gomez E D, Kim J B, Loo Y L 2009 Appl. Phys. Lett. 94 113302

    [20]

    Lilliedal M R, Medford A J, Madsen M V, Norrman K, Krebs F C 2010 Sol. Energy Mater. Solar Cells 94 2018

    [21]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [22]

    Lin Z H, Jiang C Y, Zhu C X, Zhang J 2013 ACS Appl. Mater. Interfaces 5 713

    [23]

    Kim J, Kim G, Choi Y, Lee J, Park S H, Lee K 2012 J. Appl. Phys. 111 114511

    [24]

    Trost S, Zilberberg K, Behrendt A, Polywka A, Görrn P, Reckers P, Maibach J, Mayer T, Riedl T 2013 Adv. Energy Mater. 3 1437

    [25]

    Manor A, Katz E A, Tromholt T, Krebs F C 2012 Sol. Energy Mater. Solar Cells 98 491

    [26]

    Qian L, Zheng Y, Xue J, Holloway P H 2011 Nat. Photon. 5 543

    [27]

    Manor A, Katz E A, Tromholt T, Krebs F C 2011 Adv. Energy Mater. 1 836

    [28]

    Liao H H, Chen L M, Xu Z, Li G, Yang Y 2008 Appl. Phys. Lett. 92 173303

    [29]

    Li Q H, Gao T, Wang Y G, Wang T H 2005 Appl. Phys. Lett. 86 123117

  • [1]

    Service R F 2011 Science 332 293

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Yang Q Q, Yang D B, Zhao S L, Huang Y, Xu Z, Gong W, Fan X, Liu Z F, Huang Q Y, Xu X R 2014 Chin. Phys. B 23 038405

    [6]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 63 068402]

    [7]

    Chen C C, Chang W H, Yoshimura K, Ohya K, You J B, Gao J, Hong Z R, Yang Y 2014 Adv. Mater. 26 5670

    [8]

    Krebs F C, Norrman K 2007 Prog. Photovolt.: Res. Appl. 15 697

    [9]

    de Jong M P, van IJzendoorn L J, de Voigt M J A 2000 Appl. Phys. Lett. 77 2255

    [10]

    Kyaw A K K, Sun X W, Jiang C Y, Lo G Q, Zhao D W, Kwong D L 2008 Appl. Phys. Lett. 93 221107

    [11]

    Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 465

    [12]

    Hau S K, Yip H L, Acton O, Baek N S, Ma H, Jen A K Y 2008 J. Mater. Chem. 18 5113

    [13]

    Chen L M, Hong Z, Li G, Yang Y 2009 Adv. Mater. 21 1434

    [14]

    Tan Z A, Zhang W Q, Zhang Z G, Qian D P, Huang Y, Hou J H, Li Y F 2012 Adv. Mater. 24 1476

    [15]

    Schmidt H, Zilberberg K, Schmale S, Flgge H, Riedl T, Kowalsky W 2010 Appl. Phys. Lett. 96 243305

    [16]

    Trost S, Zilberberg K, Behrendt A, Riedl T 2012 J. Mater. Chem. 22 16224

    [17]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [18]

    Sondergaard R, Helgesen M, Jorgensen M, Krebs F C 2011 Adv. Energy Mater. 1 68

    [19]

    Kim C S, Lee S S, Gomez E D, Kim J B, Loo Y L 2009 Appl. Phys. Lett. 94 113302

    [20]

    Lilliedal M R, Medford A J, Madsen M V, Norrman K, Krebs F C 2010 Sol. Energy Mater. Solar Cells 94 2018

    [21]

    Sista S, Park M H, Hong Z R, Wu Y, Hou J H, Kwan W L, Li G, Yang Y 2010 Adv. Mater. 22 380

    [22]

    Lin Z H, Jiang C Y, Zhu C X, Zhang J 2013 ACS Appl. Mater. Interfaces 5 713

    [23]

    Kim J, Kim G, Choi Y, Lee J, Park S H, Lee K 2012 J. Appl. Phys. 111 114511

    [24]

    Trost S, Zilberberg K, Behrendt A, Polywka A, Görrn P, Reckers P, Maibach J, Mayer T, Riedl T 2013 Adv. Energy Mater. 3 1437

    [25]

    Manor A, Katz E A, Tromholt T, Krebs F C 2012 Sol. Energy Mater. Solar Cells 98 491

    [26]

    Qian L, Zheng Y, Xue J, Holloway P H 2011 Nat. Photon. 5 543

    [27]

    Manor A, Katz E A, Tromholt T, Krebs F C 2011 Adv. Energy Mater. 1 836

    [28]

    Liao H H, Chen L M, Xu Z, Li G, Yang Y 2008 Appl. Phys. Lett. 92 173303

    [29]

    Li Q H, Gao T, Wang Y G, Wang T H 2005 Appl. Phys. Lett. 86 123117

  • [1] Meng Jing, Gao Bo-Wen. Photovoltaic performance optimization of integrated perovskite/organic solar cells based on PM6:Y6 polymer non-fullerene system. Acta Physica Sinica, 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [2] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [3] Zhang Chen, Zhang Hai-Yu, Hao Hui-Ying, Dong Jing-Jing, Xing Jie, Liu Hao, Shi Lei, Zhong Ting-Ting, Tang Kun-Peng, Xu Xiang. Morphology control of zinc oxide nanorods and its application as an electron transport layer in perovskite solar cells. Acta Physica Sinica, 2020, 69(17): 178101. doi: 10.7498/aps.69.20200555
    [4] Xiao Biao, Zhang Min-Li, Wang Hong-Bo, Liu Ji-Yan. High performence visble-near infrared photovoltaic detector based on narrow bandgap polymer. Acta Physica Sinica, 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [5] Li Qi, Zhang Yong. Mechanism of inverted polymer solar cells based on poly(dopamine)/ZnO as composite cathode buffer layer. Acta Physica Sinica, 2017, 66(19): 198201. doi: 10.7498/aps.66.198201
    [6] Zhang Ke, Hu Zi-Yang, Huang Li-Ke, Xu Jie, Zhang Jing, Zhu Yue-Jin. ZnO:Al textured films for improved performance in organic photovoltaics. Acta Physica Sinica, 2015, 64(17): 178801. doi: 10.7498/aps.64.178801
    [7] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [8] Yang Bing-Yang, He Da-Wei, Wang Yong-Sheng. Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices. Acta Physica Sinica, 2015, 64(10): 108801. doi: 10.7498/aps.64.108801
    [9] Gao Song, Zhao Su-Ling, Xu Zheng, Yang Yi-Fan, Liu Zhi-Min, Xie Xiao-Yi. Near ultraviolet luminescence characteristics of ZnO nanoparticle film. Acta Physica Sinica, 2014, 63(15): 157702. doi: 10.7498/aps.63.157702
    [10] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [11] Geng Jun-Jie, Zhang Jun, Zhang Yi, Ding Jian-Jun, Sun Song, Luo Zhen-Lin, Bao Jun, Gao Chen. Simulation and optimization of the cascaded luminescent solar concentrator photovoltaic system. Acta Physica Sinica, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [12] Gao Bo-Wen, Gao Chao, Que Wen-Xiu, Wei Wei. Recent development of polymer/fullerene photovoltaic cells. Acta Physica Sinica, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [13] Zhang Jin-Ling, Lü Ying-Hua, La Dong-Sheng, Liao Lei, Bai Xue-Dong. Ultraviolet light-enhanced field electron emission of zinc oxide nanowires. Acta Physica Sinica, 2012, 61(12): 128503. doi: 10.7498/aps.61.128503
    [14] Li Guo-Long, Huang Zhuo-Yin, Li Kan, Zhen Hong-Yu, Shen Wei-Dong, Liu Xu. Analysis of the effect of active layer thickness on polymer solar cell performance based on optical and opto-electronic model. Acta Physica Sinica, 2011, 60(7): 077207. doi: 10.7498/aps.60.077207
    [15] Qin Jie-Ming, Tian Li-Fei, Zhao Dong-Xu, Jiang Da-Yong, Cao Jian-Ming, Ding Meng, Guo Zhen. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [16] Ma Chen, Zhang Bao-Min, Zhang Li, Ma Yu-Feng, Zhao Wei-Fu. Optically induced light diffraction in photopolymer of fuchsin basic. Acta Physica Sinica, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [17] Zhu De-Xi, Zhen Hong-Yu, Ye Hui, Liu Xu. Polarized blue polymer light-emitting diodes utilizing rubbed hole injection layers. Acta Physica Sinica, 2009, 58(1): 596-601. doi: 10.7498/aps.58.596
    [18] Peng Rui-Xiang, Chen Chong, Shen Wei, Wang Ming-Tai, Guo Ying, Geng Hong-Wei. Amorphous/crystalline blend effects on the performance of polymer-based photovoltaic cells. Acta Physica Sinica, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [19] Li Yang-Gang, She Wei-Long. Perpendicular all-optical control of optical spatial soliton in photoisomerized polymers. Acta Physica Sinica, 2007, 56(2): 895-901. doi: 10.7498/aps.56.895
    [20] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
Metrics
  • Abstract views:  7767
  • PDF Downloads:  607
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2014
  • Accepted Date:  17 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map