Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices

Yang Bing-Yang He Da-Wei Wang Yong-Sheng

Citation:

Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices

Yang Bing-Yang, He Da-Wei, Wang Yong-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this work, the composite anode of BCP/Ag replaces the composite anode of Ca/Al, and the PTB7:PC71BM acts an as active layer for polymer solar cells. Calcium (Ca) is not a desirable candidate as electron extraction layer (EEL) for long-term stability polymer solar cells (PSCs) on account of its nature of active metal. And then, due to the poor stability of Al, which is not a desirable candidate as electrode, the bathocuproine (BCP) layer acts as an exciton blocking layer in organic device such OLEDs and small molecule solar cells, which has a k value that is close to zero for a broad range of wavelengths. The Ag has the nature of better chemical stability and conductivity than Al. In the device architecture described below, we replace the typical back metal electrode composed of a thin Ca layer and a thicker Al electrode by a few nanometer thick bathocuproine (BCP) layer and a thick 150 nm Ag layer. We investigate the effects of BCP thickness on the power conversion efficiency (PCE) and stability. The results reveal that the photovoltaic performances are improved, and a PCE of 6.82% at the 5 nm of BCP thickness, higher than the PCE of Ca/Al acted composite anode, is achieved. The substitution of BCP for Ca, can largely enhance light harvesting and exhibits an optimal light absorption by the active layer. This enhanced reflectivity of the buffer layer/electrode back contact results in an increase of the short circuit current. Compared with the devices of Ca/Al composite anode, it increases Jsc and external quantum efficiency with BCP/Ag composite anode. At the same time, it has the better stability of BCP/Ag composite anode of device, and almost the same PCE decrease ratio as free BCP devices and significantly improves the stability compared with Ca/Al composite anode. The stability test shows the better stability of BCP/Ag as composite anode than that of Ca/Al composite anode. The PCE of the device with Ca/Al as composite anode rapidly decreases by about 70% after 50 hour servicing due to the poor stabilities of Ca and Al. The device with BCP/Ag as composite anode shows favorable stability, owing to the PCE moderate decrease by less than 30% after the same story time. Our results indicate that substitution of BCP/Ag for Ca/Al composite anode is an alternative candidate for high performance and longterm photo stability PSCs.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Natural Science Foundation of China (Grant Nos. 61335006, 61378073), and the Beijing Natural Science Foundation, China (Grant No. 4132031).
    [1]

    Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 63 068402]

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Williams G, Wang Q, Aziz H 2013 Adv. Funct. Mater. 23 2239

    [6]

    Ma W L, Yang C Y, Gong X, Lee K H, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [7]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nat. Photon. 6 591

    [8]

    Guo X, Zhang M, Ma W, Ye L, Zhang S Q, Liu S J, Ade H, Huang F, Hou J H 2014 Adv. Mater. 26 4043

    [9]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [10]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [11]

    Shrotriya V, Li G, Yao Y, Chu C W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [12]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [13]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [14]

    Huang Z Y, Li G L, Li K, Zhen H Y, Shen W D, Liu X D, Liu X 2012 Acta Phys. Sin. 61 048801 (in Chinese) [黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭 2012 61 048801]

    [15]

    Alberto M O, Xavier E, Rafael B, Jordi M 2013 Adv. Opt. Mater. 1 37

    [16]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B. 20 068801

    [17]

    Verploegen E, Mondal R, Bettinger C J, Sork S, Tongey M F, Bao Z N 2010 Adv. Funct. Mater. 20 3519

    [18]

    Mihailetchi V D, Xie H X, Boer B D, Koster L J A, Blom P W M 2006 Adv. Funct. Mater. 16 699

    [19]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [20]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 62 128803]

    [21]

    Manceau M, Chambon S, Rivaton A, Gardette J L, Guillerez S, Lemaötre N 2010 Sol. Energy Mater. Sol. Cells 94 1572

    [22]

    Gallardo D E, Bertoni C, Dunn S, Gaponik N, Eych-mller A 2007 Adv. Mater. 19 3364

    [23]

    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V 2010 Org. Electron. 11 1693

    [24]

    Tavakkoli M, Ajeian R, Badrabadi M N, Ardestani S S, Feiz S M H, Nasab K E 2011 Sol. Energy Mater. Sol. Cells 95 1964

    [25]

    Das A J, Narayan K S 2013 Adv. Mater. 25 2193

    [26]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [27]

    Zhao G J, He Y J, Li Y F 2010 Adv. Mater. 22 4355

    [28]

    Zhao G J, He Y J, Xu Z, Hou J H, Zhang M J, Min J, Chen H Y, Ye M F, Hong Z R, Yang Y, Li Y F 2010 Adv. Funct. Mater. 20 1480

    [29]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 579

    [30]

    Krebs F C, Tromholt T, Jörgensen M 2010 Nanoscale 2 873

  • [1]

    Sariciftci N S, Smilowitz L, Heeger A J, Wudl F 1992 Science 258 1474

    [2]

    Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M, Heeger A J 2007 Science 317 222

    [3]

    Liu Z F, Zhao S L, Xu Z, Yang Q Q, Zhao L, Liu Z M, Chen H T, Yang Y F, Gao S, Xu X R 2014 Acta Phys. Sin. 63 068402 (in Chinese) [刘志方, 赵谡玲, 徐征, 杨倩倩, 赵玲, 刘志民, 陈海涛, 杨一帆, 高松, 徐叙瑢 2014 63 068402]

    [4]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [5]

    Williams G, Wang Q, Aziz H 2013 Adv. Funct. Mater. 23 2239

    [6]

    Ma W L, Yang C Y, Gong X, Lee K H, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [7]

    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y 2012 Nat. Photon. 6 591

    [8]

    Guo X, Zhang M, Ma W, Ye L, Zhang S Q, Liu S J, Ade H, Huang F, Hou J H 2014 Adv. Mater. 26 4043

    [9]

    You J B, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C C, Gao J, Li G, Yang Y 2013 Nat. Commun. 4 1446

    [10]

    Pan H B, Zuo L J, Fu W F, Fan C C, Andreasen B, Jiang X Q, Norrman K, Krebs F C, Chen H Z 2013 Org. Electron. 14 797

    [11]

    Shrotriya V, Li G, Yao Y, Chu C W, Yang Y 2006 Appl. Phys. Lett. 88 073508

    [12]

    Zhao C, Qiao X F, Chen B B, Hu B 2013 Org. Electron. 14 2192

    [13]

    Chen B B, Qiao X F, Liu C M, Zhao C, Chen H C, Wei K H, Hu B 2013 Appl. Phys. Lett. 102 193302

    [14]

    Huang Z Y, Li G L, Li K, Zhen H Y, Shen W D, Liu X D, Liu X 2012 Acta Phys. Sin. 61 048801 (in Chinese) [黄卓寅, 李国龙, 李衎, 甄红宇, 沈伟东, 刘向东, 刘旭 2012 61 048801]

    [15]

    Alberto M O, Xavier E, Rafael B, Jordi M 2013 Adv. Opt. Mater. 1 37

    [16]

    Liu X D, Xu Z, Zhang F J, Zhao S L, Zhang T H, Gong W, Yan G, Kong C, Wang Y S, Xu X R 2011 Chin. Phys. B. 20 068801

    [17]

    Verploegen E, Mondal R, Bettinger C J, Sork S, Tongey M F, Bao Z N 2010 Adv. Funct. Mater. 20 3519

    [18]

    Mihailetchi V D, Xie H X, Boer B D, Koster L J A, Blom P W M 2006 Adv. Funct. Mater. 16 699

    [19]

    He Z C, Zhong C M, Su S J, Xu M, Wu H B, Cao Y 2012 Nat. Photon. 6 591

    [20]

    Li Q, Li H Q, Zhao J, Huang J, Yu J S 2013 Acta Phys. Sin. 62 128803 (in Chinese) [李青, 李海强, 赵娟, 黄江, 于军胜 2013 62 128803]

    [21]

    Manceau M, Chambon S, Rivaton A, Gardette J L, Guillerez S, Lemaötre N 2010 Sol. Energy Mater. Sol. Cells 94 1572

    [22]

    Gallardo D E, Bertoni C, Dunn S, Gaponik N, Eych-mller A 2007 Adv. Mater. 19 3364

    [23]

    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V 2010 Org. Electron. 11 1693

    [24]

    Tavakkoli M, Ajeian R, Badrabadi M N, Ardestani S S, Feiz S M H, Nasab K E 2011 Sol. Energy Mater. Sol. Cells 95 1964

    [25]

    Das A J, Narayan K S 2013 Adv. Mater. 25 2193

    [26]

    Cai W Z, Gong X, Cao Y 2010 Sol. Energ. Mater. Sol. C 94 114

    [27]

    Zhao G J, He Y J, Li Y F 2010 Adv. Mater. 22 4355

    [28]

    Zhao G J, He Y J, Xu Z, Hou J H, Zhang M J, Min J, Chen H Y, Ye M F, Hong Z R, Yang Y, Li Y F 2010 Adv. Funct. Mater. 20 1480

    [29]

    Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J, Janssen R A J 2005 Nano Lett. 5 579

    [30]

    Krebs F C, Tromholt T, Jörgensen M 2010 Nanoscale 2 873

  • [1] Zhou Qing-Zhong, Guo Feng, Zhang Ming-Rui, You Qing-Liang, Xiao Biao, Liu Ji-Yan, Liu Cui, Liu Xue-Qing, Wang Liang. Impact of charge carrier recombination and energy disorder on the open-circuit voltage of polymer solar cells. Acta Physica Sinica, 2020, 69(4): 046101. doi: 10.7498/aps.69.20191699
    [2] Wei Ying-Qiang, Xu Lei, Peng Qi-Ming, Wang Jian-Pu. Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [3] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [4] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing. Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption. Acta Physica Sinica, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [5] Li Chang, Xue Wei, Han Chang-Feng, Qian Lei, Zhao Su-Ling, Yu Zhi-Nong, Zhang Ting, Wang Ling-Xue. Effect of ZnO electron-transport layer on light-soaking issue in inverted polymer solar cells. Acta Physica Sinica, 2015, 64(8): 088401. doi: 10.7498/aps.64.088401
    [6] Liu Zhi-Fang, Zhao Su-Ling, Xu Zheng, Yang Qian-Qian, Zhao Ling, Liu Zhi-Min, Chen Hai-Tao, Yang Yi-Fan, Gao Song, Xu Xu-Rong. Enhancement of performance of P3HT:PCBM based polymer solar cell by Ag2O/PEDOT:PSS composite buffer layer. Acta Physica Sinica, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [7] Liu Bin-Li, Liu De-Zhi, Luo Yi-Fei, Tang Yong, Wang Bo. Investigation into the turn-off mechanism and time of IGBT based on voltage and current. Acta Physica Sinica, 2013, 62(5): 057202. doi: 10.7498/aps.62.057202
    [8] Qi Hong-Fei, Liu Da-Bo, Cheng Bo, Hao Wei-Chang, Wang Tian-Min. Ag antidot array modified TiO2 film and its photocatalysis performance. Acta Physica Sinica, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [9] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [10] Li Hai-Hong, Li Dong-Mei, Liu Wen, Li Yuan, Liu Xiao-Jing, Liu De-Sheng, Xie Shi-Jie. Injection and transport of the charge carriers in metal/impurity polymer/metal structure. Acta Physica Sinica, 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [11] Halimulati, Abai, Baishan, Aimaiti. Boundary alternating current characteristics of an ideal p-n junction diode. Acta Physica Sinica, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [12] Preparation and thermoelectric properties of p-type Ag0.5(Pb8-xSnx)In0.5Te10 compounds. Acta Physica Sinica, 2007, 56(12): 7309-7314. doi: 10.7498/aps.56.7309
    [13] Effects of emitting and hole transporting layers on the performance of white organic light-emitting divice. Acta Physica Sinica, 2007, 56(12): 7213-7218. doi: 10.7498/aps.56.7213
    [14] Dong Guo-Yi, Li Xiao-Wei, Wei Zhi-Ren, Yang Shao-Peng, Han Li, Fu Guang-Sheng. Investigation of influences of concentration of Mn and Cu dopants on the decay process of photogenerated charge carriers in the ZnS:Mn,Cu luminescence materials. Acta Physica Sinica, 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [15] . Acta Physica Sinica, 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [16] LI HONG-JIAN, PENG JING-CUI, XU XIE-MEI, QU SHU, XIA HUI. THE EFFICIENCY OF THE FORMATION AND FISSION OF POLARON-EXCITONS IN POLYMER LIGHT-EMITTING DEVICES. Acta Physica Sinica, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [17] FENG WEI, CAO MENG, WEI WEI, WU HONG-CAI, WAN MEI-XIANG, KATSUMI YOSHINO. PROPERTIES OF CONDUCTING POLYMER DONOR-ACCEPTOR COMPOSITE FILMS AND PHOTOVOLTAIC CHARACTERISTICS OF JUNCTION DEVICES. Acta Physica Sinica, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [18] YU LI-MING, WANG QI. ANALYSIS OF THE EXISTENCE OF MAGNETOSTATIC SOLITONS IN FERROMAGNETIC FILMS UNDER THE INFLUENCE OF CARRIERS. Acta Physica Sinica, 2001, 50(5): 958-963. doi: 10.7498/aps.50.958
    [19] YANG DA-LIN, WAN MEI-XIANG, ZHANG JING-WEN, QIAN REN-YUAN. DRIFT MOBILITIES OF CARRIERS IN AMORPHOUS FILMS OF PVCz-TNF CHARGE-TRANSFER COMPLEXES. Acta Physica Sinica, 1982, 31(12): 104-109. doi: 10.7498/aps.31.104-2
    [20] HUANG CHII-SHENG, TANG TING-YUAN. RECOMBINATION PROCESSES OF CARRIERS IN INDIUM ANTIMONIDE. Acta Physica Sinica, 1965, 21(5): 1038-1048. doi: 10.7498/aps.21.1038
Metrics
  • Abstract views:  5992
  • PDF Downloads:  342
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2014
  • Accepted Date:  22 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map