-
New applications for high-power microwave (HPM) have aroused the intense interest in the development of HPM sources. The relativistic backward wave oscillator (RBWO), as one of the most promising HPM sources, has proved to be a competitive candidate for generating multi-gigawatt HPM at L, S, C, and X-band. But for the conventional RBWO, in order to maintain high conversion efficiency, a high enough magnetic field is required to confine the intense relativistic electron beam. Obviously, it can lead to high energy consumption and bulkiness. Therefore, to fulfill the requirements for applications, enhancing the conversion efficiency of the RBWO at low magnetic field has received much attention and has been investigated extensively. In this paper, we present a well-designed RBWO model with a cavity-chain modulator and a TM02 mode extractor to enhance the conversion efficiency at a low guiding magnetic field. The operation characteristics of the device are investigated in detail in this paper. Moreover, the function of each part of the device for enhancing the conversion efficiency is confirmed by the particle-in-cell simulation. In the device, the cavity-chain modulator is introduced to strengthen the beam bunching process. The TM02 extractor after the modulator increases the Q-factor of the RBWO due to its partial reflection to the outgoing microwave. The increase of the Q-factor can enhance the standing electric field in the extractor. If the phase is appropriate, the extractor can convert the kinetic beam power into the RF power efficiently. The drift tubes between the reflector, the modulator and the extractor are used to adjust the bunching phase and the conversion phase of the modulated electron beam in the RF field. Moreover, an S-band high efficiency RBWO is designed and verified by the particle-in-cell simulation. An output power of 4.2 GW at a frequency of 2.38 GHz is obtained in the simulation. And the conversion efficiency reaches 50% when the guiding magnetic field is 0.7 T. -
Keywords:
- relativistic backward wave oscillator /
- low magnetic field /
- bunched beam /
- modulator extractor
[1] Benford J, Swegle J, Schamiloglu E 2007 High Power Microwaves (2nd edition) (New Mexico: CRC Press) p313
[2] Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar
[3] Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar
[4] Friedman M, Krall J, Lau Y Y, Serlin V 1990 Rev. Sci. Instrum. 61 171Google Scholar
[5] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar
Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar
[6] McCurdy A H, Armstrong C M, Bollen W M, Parker R K, Granatstein V L 1986 Phys. Rev. Lett. 57 2379Google Scholar
[7] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar
Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar
[8] Xiao R Z, Chen C H, Zhang X W, Shun J 2009 J. Appl. Phys. 105 053306Google Scholar
[9] Xiao R Z, Chen C H, Zhang X W 2013 Appl. Phys. Lett. 102 133504Google Scholar
[10] Zhang J, Jin Z X, Yang J H, Shu T, Zhang J D, Zhong H H 2015 IEEE Trans. Plasma Sci. 43 528Google Scholar
[11] Vlasov A N, Shkvarunets A G 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar
[12] Ge X J, Zhong H H, Zhang J, Qiao B L 2013 Phys. Plasmas 20 023105Google Scholar
[13] Li Z H, Zhou Z G, Qiu R 2014 Phys. Plasmas 21 063101Google Scholar
[14] Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar
[15] Teng Y, Song W, Sun J, Xiao R Z, Song Z M 2012 Phys. Plasmas 111 043303
[16] Wu Y, Xie H Q, Li Z H, Zhang Y J, Ma Q S 2013 Phys. Plasmas 20 113102Google Scholar
[17] Wu Y 2017 Phys. Plasmas 24 073105Google Scholar
[18] 李正红, 常安碧, 鞠炳全, 张永辉, 向飞, 赵殿林, 甘延青, 刘忠, 苏昶, 黄华 2007 56 2603Google Scholar
Li Z H, Chang A B, Ju B Q, Zhang Y H, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603Google Scholar
[19] Song W, Sun J, Shao H, Xiao R Z, Chen C H, Liu G Z 2012 J. Appl. Phys. 111 023302Google Scholar
[20] Song W, Chen C H, Sun J, Zhang X W, Shao H, Song Z M, Huo S F, Shi Y C, Li X Z 2012 Phys. Plasmas 19 103111Google Scholar
-
-
[1] Benford J, Swegle J, Schamiloglu E 2007 High Power Microwaves (2nd edition) (New Mexico: CRC Press) p313
[2] Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525Google Scholar
[3] Gunin A V, Klimov A I, Korovin S D, Kurkan I K, Pegel I V, Polevin S D, Roitman A M, Rostov V V, Stepchenko A S, Totmeninov E M 1998 IEEE Trans. Plasma Sci. 26 326Google Scholar
[4] Friedman M, Krall J, Lau Y Y, Serlin V 1990 Rev. Sci. Instrum. 61 171Google Scholar
[5] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰 2010 59 1907Google Scholar
Huang H, Luo X, Lei L R, Luo G Y, Zhang B Z, Jin X, Tan J 2010 Acta Phys. Sin. 59 1907Google Scholar
[6] McCurdy A H, Armstrong C M, Bollen W M, Parker R K, Granatstein V L 1986 Phys. Rev. Lett. 57 2379Google Scholar
[7] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸 2018 67 088402Google Scholar
Huang H, Wu Y, Liu Z B, Yuan H, He H, Li L L, Li Z H, Jin X, Ma H G 2018 Acta Phys. Sin. 67 088402Google Scholar
[8] Xiao R Z, Chen C H, Zhang X W, Shun J 2009 J. Appl. Phys. 105 053306Google Scholar
[9] Xiao R Z, Chen C H, Zhang X W 2013 Appl. Phys. Lett. 102 133504Google Scholar
[10] Zhang J, Jin Z X, Yang J H, Shu T, Zhang J D, Zhong H H 2015 IEEE Trans. Plasma Sci. 43 528Google Scholar
[11] Vlasov A N, Shkvarunets A G 2000 IEEE Trans. Plasma Sci. 28 550Google Scholar
[12] Ge X J, Zhong H H, Zhang J, Qiao B L 2013 Phys. Plasmas 20 023105Google Scholar
[13] Li Z H, Zhou Z G, Qiu R 2014 Phys. Plasmas 21 063101Google Scholar
[14] Jin Z X, Zhang J, Yang J H, Zhong H H, Qian B L, Shu T, Zhang J D, Zhou S Y, Xu L R 2011 Rev. Sci. Instrum. 82 084704Google Scholar
[15] Teng Y, Song W, Sun J, Xiao R Z, Song Z M 2012 Phys. Plasmas 111 043303
[16] Wu Y, Xie H Q, Li Z H, Zhang Y J, Ma Q S 2013 Phys. Plasmas 20 113102Google Scholar
[17] Wu Y 2017 Phys. Plasmas 24 073105Google Scholar
[18] 李正红, 常安碧, 鞠炳全, 张永辉, 向飞, 赵殿林, 甘延青, 刘忠, 苏昶, 黄华 2007 56 2603Google Scholar
Li Z H, Chang A B, Ju B Q, Zhang Y H, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603Google Scholar
[19] Song W, Sun J, Shao H, Xiao R Z, Chen C H, Liu G Z 2012 J. Appl. Phys. 111 023302Google Scholar
[20] Song W, Chen C H, Sun J, Zhang X W, Shao H, Song Z M, Huo S F, Shi Y C, Li X Z 2012 Phys. Plasmas 19 103111Google Scholar
计量
- 文章访问数: 7670
- PDF下载量: 74
- 被引次数: 0