Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay

Ding Xue-Li Li Yu-Ye

Citation:

Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay

Ding Xue-Li, Li Yu-Ye
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Neural firing rhythm plays an important role in achieving the function of a nervous system. Neurons with autapse, which starts and ends in the same cell, are widespread in the nervous system. Previous results of both experimental and theoretical studies have shown that autaptic connection plays a role in influencing dynamics of neural firing patterns and has a significant physiological function. In the present study, the dynamics of a neuronal model, i.e., Rulkov model with inhibitory autapse and time delay, is investigated, and compared with the dynamics of neurons without autapse. The bifurcations with respect to time-delay and the coupling strength are extensively studied, and the time series of membrane potentials is also calculated to confirm the bifurcation analysis. It can be found that with the increase of time-delay and/or the coupling strength, the period-adding bifurcation of neural firing patterns can be induced in the Rulkov neuron model. With the increase of the period number of the firing rhythm, the average firing frequency increases. When time-delay and/or coupling strength are/is greater than their/its corresponding certain thresholds/threshold, the average firing frequency is higher than that of the neuron without autapse. Furthermore, new bursting patterns, which appear at suitable time delays and coupling strengths, can be well interpreted with the dynamic responses of an isolated single neuron to a negative square current whose action time, duration, and strength are similar to those of the inhibitory coupling current modulated by the coupling strength and time delay. The bursts of neurons with autapse show the same pattern as the square negative current-induced burst of the isolated single neuron when the time delay corresponds to the phase. The bifurcation structure of the neural firing rhythm of the neuron without autapse can be obtained with the fast-slow dissection method. The dynamic responses of the isolated bursting neuron to the negative square current are acquired by using the fast-slow variable dissection method, which can help to recognize the new rhythms induced by the external negative pulse current applied at different phases. The new rhythm patterns are consistent with those lying in the period-adding bifurcations. The results not only reveal that the inhibitory autapse can induce typical nonlinear phenomena such as the period-adding bifurcations, but also provide the new phenomenon that the inhibitory autapse can enhance the firing frequency, which is different from previous viewpoint that inhibitory effect often reduces the firing frequency. These findings further enrich the understanding of the nonlinear phenomena induced by inhibitory autapse.
      Corresponding author: Li Yu-Ye, liyuye2000@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 11402039) and the Natural Science Foundation of Anhui Province, China(Grant No. KJ2015B008).
    [1]

    Coombes S, Osbaldestin A H 2000 Phys. Rev. E 62 4057

    [2]

    Clay J R 2003 J. Comput. Neurosci. 15 43

    [3]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [4]

    Li L, Gu H G, Yang M H, Liu Z Q, Ren W 2004 Int. J. Bifurcat. Chaos 14 1813

    [5]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505(in Chinese)[古华光, 朱洲, 贾冰2011 60 100505]

    [6]

    Gu H G, Chen S G 2014 Sci. China:Tech. Sci. 57 864

    [7]

    Braun H A, Huber M T, Dewald M, Schäfer K, Voigt K 1998 Int. J. Bifurcat. Chaos 8 881

    [8]

    Braun H A, Huber M T, Anthes N, Voigt K, Neiman A, Pei X, Moss F 2000 Neurocomputing 32-33 51

    [9]

    Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F, Xu J X 1997 Int. J. Bifurcat. Chaos 7 1867

    [10]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 221

    [11]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 349

    [12]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 583

    [13]

    Fan Y S, Holden A V 1993 Chaos Soliton. Fractal. 3 439

    [14]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chin. Phys. B 19 050513

    [15]

    Gu H G, Xi L, Jia B 2012 Acta Phys. Sin. 61 080504(in Chinese)[古华光, 惠磊, 贾冰2012 61 080504]

    [16]

    Tan N, Xu J X, Yang H J, Hu S J 2003 Acta Bioph. Sin. 19 395(in Chinese)[谭宁, 徐健学, 杨红军, 胡三觉2003生物 19 395]

    [17]

    Yang J, Duan Y B, Xing J L, Zhu J L, Duan J H, Hu S J 2006 Neurosci. Lett. 392 105

    [18]

    Gu H G, Pan B B, Chen G R, Duan L X 2014 Nonlinear Dyn. 78 391

    [19]

    Loos H V D, Glaser E M 1973 Brain Res. 48 355

    [20]

    Pouzat C, Marty A 1998 J. Physiol. 509 777

    [21]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [24]

    Lbke J, Markram H, Frotscher M, Sakmann B 1996 Ann. Anatomy. 178 309

    [25]

    Tamás G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [26]

    Cobb S R, Halasy K, Vida I, Nyiri G, Tamás G, Buhl E H, Somogyi P 1997 Neuroscience 79 629

    [27]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [28]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [29]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese)[任国栋, 武刚, 马军, 陈旸2015 64 058702]

    [30]

    Yilmaz E, Baysal V, Perc M, Ozer M 2016 Sci. China:Tech. Sci. 59 364

    [31]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Tech. Sci. 58 1007

    [32]

    Qin H, Ma J, Wang C, Wu Y 2014 Plos One 9 e100849

    [33]

    Connelly W M 2014 Plos One 9 e89995

    [34]

    Wu Y N, Gong Y B, Wang Q 2015 Chaos 25 245

    [35]

    Qin H X, Ma J, Jin W Y, Wang C N 2010 Phys. Rev. E 82 061907

    [36]

    Hashemi M, Valizadeh A, Azizi Y 2012 Phys. Rev. E 85 021917

    [37]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [38]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [39]

    Wang H T, Wang L F, Chen Y L, Chen Y 2014 Chaos 24 033122

    [40]

    Wang L, Zeng Y J 2013 Neurol. Sci. 34 1977

    [41]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [42]

    Ikeda K, Bekkers J M 2006 Curr. Biol. 16 R308

    [43]

    Gaudreault M, Drolet F, Vials J 2012 Phys. Rev. E 85 056214

    [44]

    Ahlborn A, Parlitz U 2004 Phys. Rev. Lett. 93 264101

    [45]

    Balanov A G, Janson N B, Schöll E 2005 Phys. Rev. E 71 016222

    [46]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [47]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [48]

    Ibarz B, Cao H J, Sanjuán M A F 2008 Phys. Rev. E 77 051918

    [49]

    Gu H G, Zhao Z G 2015 Plos One 10 e0138593

    [50]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [51]

    Zhao Z G, Gu H G 2015 Chaos Soliton. Fractal. 80 96

  • [1]

    Coombes S, Osbaldestin A H 2000 Phys. Rev. E 62 4057

    [2]

    Clay J R 2003 J. Comput. Neurosci. 15 43

    [3]

    Gu H G, Yang M H, Li L, Liu Z Q, Ren W 2003 Phys. Lett. A 319 89

    [4]

    Li L, Gu H G, Yang M H, Liu Z Q, Ren W 2004 Int. J. Bifurcat. Chaos 14 1813

    [5]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505(in Chinese)[古华光, 朱洲, 贾冰2011 60 100505]

    [6]

    Gu H G, Chen S G 2014 Sci. China:Tech. Sci. 57 864

    [7]

    Braun H A, Huber M T, Dewald M, Schäfer K, Voigt K 1998 Int. J. Bifurcat. Chaos 8 881

    [8]

    Braun H A, Huber M T, Anthes N, Voigt K, Neiman A, Pei X, Moss F 2000 Neurocomputing 32-33 51

    [9]

    Ren W, Hu S J, Zhang B J, Wang F Z, Gong Y F, Xu J X 1997 Int. J. Bifurcat. Chaos 7 1867

    [10]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 221

    [11]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 349

    [12]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fractal. 2 583

    [13]

    Fan Y S, Holden A V 1993 Chaos Soliton. Fractal. 3 439

    [14]

    Mo J, Li Y Y, Wei C L, Yang M H, Gu H G, Qu S X, Ren W 2010 Chin. Phys. B 19 050513

    [15]

    Gu H G, Xi L, Jia B 2012 Acta Phys. Sin. 61 080504(in Chinese)[古华光, 惠磊, 贾冰2012 61 080504]

    [16]

    Tan N, Xu J X, Yang H J, Hu S J 2003 Acta Bioph. Sin. 19 395(in Chinese)[谭宁, 徐健学, 杨红军, 胡三觉2003生物 19 395]

    [17]

    Yang J, Duan Y B, Xing J L, Zhu J L, Duan J H, Hu S J 2006 Neurosci. Lett. 392 105

    [18]

    Gu H G, Pan B B, Chen G R, Duan L X 2014 Nonlinear Dyn. 78 391

    [19]

    Loos H V D, Glaser E M 1973 Brain Res. 48 355

    [20]

    Pouzat C, Marty A 1998 J. Physiol. 509 777

    [21]

    Bekkers J M 2003 Curr. Biol. 13 R433

    [22]

    Saada R, Miller N, Hurwitz I, Susswein A J 2009 Curr. Biol. 19 479

    [23]

    Bacci A, Huguenard J R, Prince D A 2003 J. Neurosci. 23 859

    [24]

    Lbke J, Markram H, Frotscher M, Sakmann B 1996 Ann. Anatomy. 178 309

    [25]

    Tamás G, Buhl E H, Somogyi P 1997 J. Neurosci. 17 6352

    [26]

    Cobb S R, Halasy K, Vida I, Nyiri G, Tamás G, Buhl E H, Somogyi P 1997 Neuroscience 79 629

    [27]

    Bacci A, Huguenard J R 2006 Neuron 49 119

    [28]

    Bacci A, Huguenard J R, Prince D A 2005 Trends Neurosci. 28 602

    [29]

    Ren G D, Wu G, Ma J, Chen Y 2015 Acta Phys. Sin. 64 058702(in Chinese)[任国栋, 武刚, 马军, 陈旸2015 64 058702]

    [30]

    Yilmaz E, Baysal V, Perc M, Ozer M 2016 Sci. China:Tech. Sci. 59 364

    [31]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Tech. Sci. 58 1007

    [32]

    Qin H, Ma J, Wang C, Wu Y 2014 Plos One 9 e100849

    [33]

    Connelly W M 2014 Plos One 9 e89995

    [34]

    Wu Y N, Gong Y B, Wang Q 2015 Chaos 25 245

    [35]

    Qin H X, Ma J, Jin W Y, Wang C N 2010 Phys. Rev. E 82 061907

    [36]

    Hashemi M, Valizadeh A, Azizi Y 2012 Phys. Rev. E 85 021917

    [37]

    Wang H T, Ma J, Chen Y L, Chen Y 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 3242

    [38]

    Wang H T, Chen Y 2015 Chin. Phys. B 24 128709

    [39]

    Wang H T, Wang L F, Chen Y L, Chen Y 2014 Chaos 24 033122

    [40]

    Wang L, Zeng Y J 2013 Neurol. Sci. 34 1977

    [41]

    Yilmaz E, Baysal V, Ozer M, Perc M 2016 Physica A 444 538

    [42]

    Ikeda K, Bekkers J M 2006 Curr. Biol. 16 R308

    [43]

    Gaudreault M, Drolet F, Vials J 2012 Phys. Rev. E 85 056214

    [44]

    Ahlborn A, Parlitz U 2004 Phys. Rev. Lett. 93 264101

    [45]

    Balanov A G, Janson N B, Schöll E 2005 Phys. Rev. E 71 016222

    [46]

    Rulkov N F 2002 Phys. Rev. E 65 041922

    [47]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [48]

    Ibarz B, Cao H J, Sanjuán M A F 2008 Phys. Rev. E 77 051918

    [49]

    Gu H G, Zhao Z G 2015 Plos One 10 e0138593

    [50]

    Belykh I, Shilnikov A 2008 Phys. Rev. Lett. 101 078102

    [51]

    Zhao Z G, Gu H G 2015 Chaos Soliton. Fractal. 80 96

  • [1] Li Li, Zhao Zhi-Guo, Gu Hua-Guang. Suppression effects of excitatory and inhibitory self-feedbacks on neuronal spiking near Hopf bifurcation. Acta Physica Sinica, 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [2] Ding Xue-Li, Gu Hua-Guang, Jia Bing, Li Yu-Ye. Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model. Acta Physica Sinica, 2021, 70(21): 218701. doi: 10.7498/aps.70.20210912
    [3] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [4] Yang Yong-Xia, Li Yu-Ye, Gu Hua-Guang. Synchronization transition from bursting to spiking and bifurcation mechanism of the pre-Bötzinger complex. Acta Physica Sinica, 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [5] Ding Xue-Li, Jia Bing, Li Yu-Ye. Explanation to negative feedback induced-enhancement of neural electronic activities with phase response curve. Acta Physica Sinica, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [6] Cao Ben,  Guan Li-Nan,  Gu Hua-Guang. Bifurcation mechanism of not increase but decrease of spike number within a neural burst induced by excitatory effect. Acta Physica Sinica, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [7] Peng Xing-Zhao, Yao Hong, Du Jun, Ding Chao, Zhang Zhi-Hao. Study on cascading invulnerability of multi-coupling-links coupled networks based on time-delay coupled map lattices model. Acta Physica Sinica, 2014, 63(7): 078901. doi: 10.7498/aps.63.078901
    [8] Li Xiao-Jing, Chen Xuan-Qing, Yan Jing. Hopf bifurcation and the problem of periodic solutions in a recharge-discharge oscillator model for El Niño and southern oscillation with time delay. Acta Physica Sinica, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [9] Xu Chang-Jin. Bifurcation analysis for a delayed sea-air oscillator coupling model for the ENSO. Acta Physica Sinica, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [10] Gu Hua-Guang, Xi Lei, Jia Bing. Identification of a stochastic neural firing rhythm lying in period-adding bifurcation and resembling chaos. Acta Physica Sinica, 2012, 61(8): 080504. doi: 10.7498/aps.61.080504
    [11] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [12] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [13] Zhang Li-Ping, Xu Min, Wang Hui-Nan. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [14] Ji Ying, Bi Qin-Sheng. Non-smooth bifurcation analysis of a piecewise linear chaotic circuit. Acta Physica Sinica, 2010, 59(11): 7612-7617. doi: 10.7498/aps.59.7612
    [15] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [16] Wu Ran-Chao. Synchronization of delayed discrete-time neural networks. Acta Physica Sinica, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [17] Wang Zuo-Lei. Stability and Hopf bifurcation of the simplified Lang-Kobayashi equation. Acta Physica Sinica, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [18] Wang Zhan-Shan, Zhang Hua-Guang. The role of inhibitory neuron in a delayed neural network. Acta Physica Sinica, 2006, 55(11): 5674-5680. doi: 10.7498/aps.55.5674
    [19] Zhang Qiang, Gao Lin, Wang Chao, Xu Jin. Global stability of bidirectional associative memory neural networks with dela ys. Acta Physica Sinica, 2003, 52(7): 1600-1605. doi: 10.7498/aps.52.1600
    [20] Zhang Qiang, Gao Lin, Wang Chao, Yuan Tao, Xu Jin. Study of the dynamics of a first-order cellular neural networks with delay. Acta Physica Sinica, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
Metrics
  • Abstract views:  7140
  • PDF Downloads:  324
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2016
  • Accepted Date:  01 July 2016
  • Published Online:  05 November 2016

/

返回文章
返回
Baidu
map