搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计算相位响应曲线的方波扰动直接算法

谢勇 程建慧

引用本文:
Citation:

计算相位响应曲线的方波扰动直接算法

谢勇, 程建慧

A direct algorithm with square wave perturbation for calculating phase response curve

Xie Yong, Cheng Jian-Hui
PDF
导出引用
  • 通过相位响应曲线可对具有极限环周期运动的动力系统的性质有更为深入的理解.神经元是一个典型的动力系统,因此相位响应曲线提供了一种研究神经元重复周期放电行为的新思路.本文提出一种求解相位响应曲线的方法,即方波扰动的直接算法,通过Hodgkin-Huxley,FitzHugh-Nagumo,Morris-Lecar和Hindmarsh-Rose神经元模型验证该算法可计算周期峰放电、周期簇放电的相位响应曲线.该算法克服了其他算法在运用过程中的局限性.利用该算法计算结果表明:周期峰放电的相位响应曲线类型是由其分岔类型所决定;在Morris-Lecar模型中发现一种开始于Hopf分岔终止于鞍点同宿轨道分岔的阈上周期振荡,其相位响应曲线属于第二类型.通过大量的相位响应曲线的计算发现相位响应的相对大小及正负性仅取决于扰动所施加的时间,而且周期簇放电的相位响应曲线比周期峰放电的相位响应曲线更为复杂.
    Neuron is a typical dynamic system, therefore, it is quite natural to study the firing behaviors of neurons by using the dynamical system theory. Two kinds of firing patterns, i.e., the periodic spiking and the periodic bursting, are the limit cycle oscillators from the point of view of nonlinear dynamics. The simplest way to describe the limit cycle is to use the phase of the oscillator. A complex state space model can be mapped into a one-dimensional phase model by phase transformation, which is helpful for obtaining the analytical solution of the oscillator system. The response characteristics of the oscillator system in the motion state of the limit cycle to the external stimuli can be characterized by the phase response curve. A phase response curve illustrates the transient change in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. Now it is widely believed that the phase response curve provides a new way to study the behavior of the neuron. Existing studies have shown that the phase response curve of the periodic spiking can be divided into two types, which are closely related to the bifurcation mechanism of neurons from rest to repetitive firing. However, there are few studies on the relationship between the phase response curve and the bifurcation type of the periodic bursting. Clearly, the first prerequisite to understand this relationship is to calculate the phase response curve of the periodic bursting. The existing algorithms for computing the phase response curve are often unsuccessful in the periodic bursting. In this paper, we present a method of calculating the phase response curve, namely the direct algorithm with square wave perturbation. The phase response curves of periodic spiking and periodic bursting can be obtained by making use of the direct algorithm, which is verified in the four neuron models of the Hodgkin-Huxley, FitzHugh-Nagumo, Morris-Lecar and Hindmarsh-Rose. This algorithm overcomes the limitations to other algorithms in the application. The calculation results show that the phase response curve of the periodic spiking is determined by the bifurcation type. We find a suprathreshold periodic oscillation starting from a Hopf bifurcation and terminating at a saddle homoclinic orbit bifurcation as a function of the applied current strength in the Morris-Lecar model, and its phase response curve belongs to Type II. A large amount of calculation indicates that the relative size of the phase response and its positive or negative value depend only on the time of imposing perturbation, and the phase response curve of periodic bursting is more complicated than that of periodic spiking.
      通信作者: 谢勇, yxie@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11272241,11672219)资助的课题.
      Corresponding author: Xie Yong, yxie@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272241, 11672219).
    [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    FitzHugh R 1961 Biophys. J. 1 445

    [3]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. London Ser. B 221 87

    [6]

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese) [徐泠风, 李传东, 陈玲 2016 65 240701]

    [7]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 221

    [8]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 349

    [9]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 583

    [10]

    Fan Y S, Holden A V 1993 Chaos Soliton. Fract. 3 439

    [11]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [12]

    Gong P L, Xu J X 2001 Phys. Rev. E 63 031906

    [13]

    Ding X L, Li Y Y 2016 Acta Phys. Sin. 65 210502 (in Chinese) [丁学利, 李玉叶 2016 65 210502]

    [14]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 60 100505]

    [15]

    Jin Q T, Wang J, Wei X L, Deng B, Che Y Q 2011 Acta Phys. Sin. 60 098701 (in Chinese) [金淇涛, 王江, 魏熙乐, 邓斌, 车艳秋 2011 60 098701]

    [16]

    Wang H X, Wang Q Y, Lu Q S 2011 Chaos Soliton. Fract. 44 667

    [17]

    Yang Z Q, Guan T T, Gan C B, Zhang J Y 2011 Acta Phys. Sin. 60 110202 (in Chinese) [杨卓琴, 管亭亭, 甘春标, 张矫瑛 2011 60 110202]

    [18]

    Longtin A 1993 J. Stat. Phys. 70 309

    [19]

    Braun H A, Wissing H, Schfer K, Hirsch M C 1994 Nature 367 270

    [20]

    Wiesenfeld K, Moss F 1995 Nature 373 33

    [21]

    Yu Y, Wang W, Wang J, Liu F 2001 Phys. Rev. E 63 021907

    [22]

    Liu F, Wang J, Wang W 1999 Phys. Rev. E 59 3453

    [23]

    Ermentrout B 1996 Neural Comput. 8 979

    [24]

    Gutkin B S, Ermentrout G B, Reyes A D 2005 J. Neurophysiol. 94 1623

    [25]

    Hastings J W, Sweeney B M 1958 Biol. Bull. 115 440

    [26]

    Johnson C H 1999 Chronobiol. Int. 16 711

    [27]

    Ikeda N 1982 Biol. Cybern. 43 157

    [28]

    Tsalikakis D G, Zhang H G, Fotiadis D I, Kremmydas G P, Michalis L K 2007 Comput. Biol. Med. 37 8

    [29]

    Ermentrout G B, Kopell N 1991 J. Math. Biol. 29 195

    [30]

    Ermentrout G B 1992 SIAM J. Appl. Math. 52 1665

    [31]

    Stiger T, Danzl P, Moehlis J, Netoff T I 2010 J. Med. Devices 4 027533

    [32]

    Shi X, Zhang J D 2016 Chin. Phys. B 25 060502

    [33]

    Schultheiss N W, Prinz A A, Butera R J 2012 Phase Response Curves in Neuroscience (New York: Springer) p3

    [34]

    Ermentrout G B 2002 Simulating, Analyzing, and Animating Dynamical Systems: a Guide to XPPAUT for Researchers and Students (Philadelphia: SIAM) p226

    [35]

    Govaerts W, Sautois B 2006 Neural Comput. 18 817

    [36]

    Sherwood W E, Guckenheimer J 2010 SIAM J. Appl. Dyn. Syst. 9 659

    [37]

    Novicenko V, Pyragas K 2011 Nonlinear Dynam. 67 517

    [38]

    Ermentrout G B, Terman D H 2010 Mathematical Foundations of Neuroscience (New York: Springer) p51

  • [1]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [2]

    FitzHugh R 1961 Biophys. J. 1 445

    [3]

    Nagumo J, Arimoto S, Yoshizawa S 1962 Proc. IRE 50 2061

    [4]

    Morris C, Lecar H 1981 Biophys. J. 35 193

    [5]

    Hindmarsh J L, Rose R M 1984 Proc. R. Soc. London Ser. B 221 87

    [6]

    Xu L F, Li C D, Chen L 2016 Acta Phys. Sin. 65 240701 (in Chinese) [徐泠风, 李传东, 陈玲 2016 65 240701]

    [7]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 221

    [8]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 349

    [9]

    Holden A V, Fan Y S 1992 Chaos Soliton. Fract. 2 583

    [10]

    Fan Y S, Holden A V 1993 Chaos Soliton. Fract. 3 439

    [11]

    Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171

    [12]

    Gong P L, Xu J X 2001 Phys. Rev. E 63 031906

    [13]

    Ding X L, Li Y Y 2016 Acta Phys. Sin. 65 210502 (in Chinese) [丁学利, 李玉叶 2016 65 210502]

    [14]

    Gu H G, Zhu Z, Jia B 2011 Acta Phys. Sin. 60 100505 (in Chinese) [古华光, 朱洲, 贾冰 2011 60 100505]

    [15]

    Jin Q T, Wang J, Wei X L, Deng B, Che Y Q 2011 Acta Phys. Sin. 60 098701 (in Chinese) [金淇涛, 王江, 魏熙乐, 邓斌, 车艳秋 2011 60 098701]

    [16]

    Wang H X, Wang Q Y, Lu Q S 2011 Chaos Soliton. Fract. 44 667

    [17]

    Yang Z Q, Guan T T, Gan C B, Zhang J Y 2011 Acta Phys. Sin. 60 110202 (in Chinese) [杨卓琴, 管亭亭, 甘春标, 张矫瑛 2011 60 110202]

    [18]

    Longtin A 1993 J. Stat. Phys. 70 309

    [19]

    Braun H A, Wissing H, Schfer K, Hirsch M C 1994 Nature 367 270

    [20]

    Wiesenfeld K, Moss F 1995 Nature 373 33

    [21]

    Yu Y, Wang W, Wang J, Liu F 2001 Phys. Rev. E 63 021907

    [22]

    Liu F, Wang J, Wang W 1999 Phys. Rev. E 59 3453

    [23]

    Ermentrout B 1996 Neural Comput. 8 979

    [24]

    Gutkin B S, Ermentrout G B, Reyes A D 2005 J. Neurophysiol. 94 1623

    [25]

    Hastings J W, Sweeney B M 1958 Biol. Bull. 115 440

    [26]

    Johnson C H 1999 Chronobiol. Int. 16 711

    [27]

    Ikeda N 1982 Biol. Cybern. 43 157

    [28]

    Tsalikakis D G, Zhang H G, Fotiadis D I, Kremmydas G P, Michalis L K 2007 Comput. Biol. Med. 37 8

    [29]

    Ermentrout G B, Kopell N 1991 J. Math. Biol. 29 195

    [30]

    Ermentrout G B 1992 SIAM J. Appl. Math. 52 1665

    [31]

    Stiger T, Danzl P, Moehlis J, Netoff T I 2010 J. Med. Devices 4 027533

    [32]

    Shi X, Zhang J D 2016 Chin. Phys. B 25 060502

    [33]

    Schultheiss N W, Prinz A A, Butera R J 2012 Phase Response Curves in Neuroscience (New York: Springer) p3

    [34]

    Ermentrout G B 2002 Simulating, Analyzing, and Animating Dynamical Systems: a Guide to XPPAUT for Researchers and Students (Philadelphia: SIAM) p226

    [35]

    Govaerts W, Sautois B 2006 Neural Comput. 18 817

    [36]

    Sherwood W E, Guckenheimer J 2010 SIAM J. Appl. Dyn. Syst. 9 659

    [37]

    Novicenko V, Pyragas K 2011 Nonlinear Dynam. 67 517

    [38]

    Ermentrout G B, Terman D H 2010 Mathematical Foundations of Neuroscience (New York: Springer) p51

  • [1] 黎丽, 赵志国, 古华光. 兴奋性和抑制性自反馈压制靠近Hopf分岔的神经电活动比较.  , 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [2] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动.  , 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [3] 谢盈, 朱志刚, 张晓锋, 任国栋. 光电流驱动下非线性神经元电路的放电模式控制.  , 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676
    [4] 赵雅琪, 刘谋天, 赵勇, 段利霞. 耦合前包钦格复合体神经元中复杂混合簇放电的动力学.  , 2021, 70(12): 120501. doi: 10.7498/aps.70.20210093
    [5] 姜伊澜, 陆博, 张万芹, 古华光. 快自突触反馈诱发混合簇放电的反常变化及分岔机制.  , 2021, 70(17): 170501. doi: 10.7498/aps.70.20210208
    [6] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制.  , 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [7] 杨永霞, 李玉叶, 古华光. Pre-Bötzinger复合体的从簇到峰放电的同步转迁及分岔机制.  , 2020, 69(4): 040501. doi: 10.7498/aps.69.20191509
    [8] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动.  , 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [9] 曹奔, 关利南, 古华光. 兴奋性作用诱发神经簇放电个数不增反降的分岔机制.  , 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [10] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究.  , 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [11] 李佳佳, 吴莹, 独盟盟, 刘伟明. 电磁辐射诱发神经元放电节律转迁的动力学行为研究.  , 2015, 64(3): 030503. doi: 10.7498/aps.64.030503
    [12] 王付霞, 谢勇. "Hopf/homoclinic"簇放电和"SubHopf/homoclinic"簇放电之间的同步.  , 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [13] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究.  , 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [14] 李向红, 毕勤胜. 铂族金属氧化过程中的簇发振荡及其诱发机理.  , 2012, 61(2): 020504. doi: 10.7498/aps.61.020504
    [15] 古华光, 朱洲, 贾冰. 一类新的混沌神经放电的动力学特征的实验和数学模型研究.  , 2011, 60(10): 100505. doi: 10.7498/aps.60.100505
    [16] 杨卓琴, 管亭亭, 甘春标, 张矫瑛. 双参数分岔平面内胰腺细胞的簇放电分析.  , 2011, 60(11): 110202. doi: 10.7498/aps.60.110202
    [17] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [18] 邢真慈, 徐伟, 戎海武, 王宝燕. 有界噪声激励下带有时滞反馈的随机Mathieu-Duffing系统的响应.  , 2009, 58(2): 824-829. doi: 10.7498/aps.58.824
    [19] 王洪坡, 李 杰. 一类非自治位置时滞反馈控制系统的亚谐共振响应.  , 2007, 56(5): 2504-2516. doi: 10.7498/aps.56.2504
    [20] 张 维, 周淑华, 任 勇, 山秀明. Turbo译码算法的分岔与控制.  , 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
计量
  • 文章访问数:  7427
  • PDF下载量:  423
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-25
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map