-
With the advances in technology, how to solve the problem of contradiction between the large field of view and high resolution of images becomes one of the research focus of many scientific researchers. In this paper we present the concept of dually foveated imaging optical system, based on the traditional singly foveated imaging system which simulates the human eye, by introducing a reflective liquid crystal spatial light modulator for modulating the aberrations of two fields of a view, so improving the corresponding aberrations and achieving high-resolution image of the two different fields of view, while the remaining fields of the view are of low-resolution image. In this way it can solve the contradiction between the large field of view and high resolution image. In this paper, we design a dually foveated imaging optical system with the following parameters: reference wavelength is 587 nm, the field of view is 60° (i.e., ± 30°), F/8, the focal length is 60 mm. Simulation is conducted by CODE V, achieving a 5° and 17° dual field high-resolution image, and the remaining field being of low-resolution image; and calculation shows the high diffraction efficiency of the system with sampling resolution of 32 × 32, verifying the scientificness and accuracy of the design method.
-
Keywords:
- foveated image /
- spatial light modulator /
- high-resolution image /
- dual fields
[1] Hua H, Liu S 2008 Appl. Opt. 47 317
[2] Jianwei Yang, Miami US Patent 7973834 [2011-05-07]
[3] Wang Y Q, Liu T G 2007 Journal of Jiaozuo University 3 82 (in Chinese) [王永强, 刘太刚 2007 焦作大学学报 3 82]
[4] Efron U 1995 Spatial Light Modulator Technology: Materials, Devices and Applications (New York: Marcel Dekker Inc)p96
[5] Martinez T, Wick D V, Restaino S R 2001 Opt. Express 8 555
[6] George Curatu, James Harvey E 2009 Ph. D. Dissertation (US: University of Central Florida)
[7] Beeckman J, Neyts K, Pieter Vanbrabant J M 2011 Opt.Engineering. 50 081201
[8] Love G D 1997 Appl. Opt. 36 1517
[9] Cai D M, Ling N, Jiang W H 2008 Acta Phys. Sin. 57 897 (in Chinese) [蔡冬梅, 凌宁, 姜文汉 2008 57 897]
[10] Liu Y, Cao Z, Li D, Mu Q 2006 Opt. Engineering 45 128001
[11] Liu J G, Li Y, Li L, Huang Y F 2009 Chin. Phys.B 18 565
[12] Peng Q Q 2011 Dissertatio M Sn (Beijing: Beijing Insititute of Technology) (in Chinese) [彭晴晴 2011 硕士学位论文(北京: 北京理工大学)]
-
[1] Hua H, Liu S 2008 Appl. Opt. 47 317
[2] Jianwei Yang, Miami US Patent 7973834 [2011-05-07]
[3] Wang Y Q, Liu T G 2007 Journal of Jiaozuo University 3 82 (in Chinese) [王永强, 刘太刚 2007 焦作大学学报 3 82]
[4] Efron U 1995 Spatial Light Modulator Technology: Materials, Devices and Applications (New York: Marcel Dekker Inc)p96
[5] Martinez T, Wick D V, Restaino S R 2001 Opt. Express 8 555
[6] George Curatu, James Harvey E 2009 Ph. D. Dissertation (US: University of Central Florida)
[7] Beeckman J, Neyts K, Pieter Vanbrabant J M 2011 Opt.Engineering. 50 081201
[8] Love G D 1997 Appl. Opt. 36 1517
[9] Cai D M, Ling N, Jiang W H 2008 Acta Phys. Sin. 57 897 (in Chinese) [蔡冬梅, 凌宁, 姜文汉 2008 57 897]
[10] Liu Y, Cao Z, Li D, Mu Q 2006 Opt. Engineering 45 128001
[11] Liu J G, Li Y, Li L, Huang Y F 2009 Chin. Phys.B 18 565
[12] Peng Q Q 2011 Dissertatio M Sn (Beijing: Beijing Insititute of Technology) (in Chinese) [彭晴晴 2011 硕士学位论文(北京: 北京理工大学)]
Catalog
Metrics
- Abstract views: 6890
- PDF Downloads: 557
- Cited By: 0