-
In this paper, we develop a system that can be used to measure and compensate spectral phase of femtosecond laser pulses based on the multi-photon intra-pulse interference phase scan (MIIPS). In the system, a liquid crystal spatial light modulator (LC-SLM) is used to impose phase scan on the femtosecond laser pulse, while a spectrometer is used to record the MIIPS trace. Both the LC-SLM and the spectrometer are driven by home-developed LabVIEW programs. By analyzing the MIIPS trace, we obtain the spectral phase of the pre-chirped femtosecond laser pulse with only 3-times iteration. The femtosecond laser pulse is centered at 810 nm and has a repetition of 1 kHz. The accuracy of our measurement is less than ±0.1 rad. The measured phases are compensated by the LC-SLM, then we obtain a femtosecond laser pulse which is almost in the transform limit state. The device will be useful in many fields, for example, multi-photon microscopy, pulse shaping, and femtosecond laser spectroscopy etc.
-
Keywords:
- femtosecond laser pulse /
- phase measurement and compensation /
- multi-photon intra-pulse interference phase scan /
- liquid crystal spatial light modulator
[1] Sibbett W, Brown C T A 2012 Opt. Express 20 6989
[2] Huang S W, Cerullo G 2011 Nature Photon. 5 475
[3] Frostig H, Silberberg Y 2011 Opt. Lett. 36 1248
[4] Cheng W, Zhang S, Jia T, Ma J, Feng D, Sun Z 2013 Chin. Opt. Lett. 11 041903
[5] DeLong K W, Trebino R 1994 J. Opt. Soc. Am. B 11 2206
[6] Iaconis C 1998 Opt. Lett. 23 792
[7] Liu J, Jiang Y, Kobayashi T, Li R, Xu Z 2012 J. Opt. Soc. Am. B 29 29
[8] Li F J, Liu J, Li R X 2013 Acta Phys. Sin. 62 064211 (in Chinese) [李方家, 刘军, 李儒新 2013 62 064211]
[9] Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829
[10] Meshulach D, Silberberg Y 1998 Nature 396 239
[11] Zhang H, Zhang S A, Sun Z R 2011 Chin. Phys. B 20 083202
[12] Walowicz K A, Dantus M 2002 J. Phys. Chem. A 106 9369
[13] Lozovoy V V, Dantus M 2004 Opt. Lett. 29 775
[14] Comstock M, Dantus M 2004 Opt. Express 12 1061
[15] Xu B W, Dantus M 2006 J. Opt. Soc. Am. B 23 750
[16] Xu B W, Dantus M 2006 Opt. Express 14 10939
[17] Metzger B, Giessen H 2011 Opt. Express 19 24354
[18] Loriot V 2013 Opt. Express 21 24879
[19] Hacker M 2001 Appl. Phys. B 73 273
[20] Siqueira J P, Zilio S C 2012 Appl. Phys. B 108 727
-
[1] Sibbett W, Brown C T A 2012 Opt. Express 20 6989
[2] Huang S W, Cerullo G 2011 Nature Photon. 5 475
[3] Frostig H, Silberberg Y 2011 Opt. Lett. 36 1248
[4] Cheng W, Zhang S, Jia T, Ma J, Feng D, Sun Z 2013 Chin. Opt. Lett. 11 041903
[5] DeLong K W, Trebino R 1994 J. Opt. Soc. Am. B 11 2206
[6] Iaconis C 1998 Opt. Lett. 23 792
[7] Liu J, Jiang Y, Kobayashi T, Li R, Xu Z 2012 J. Opt. Soc. Am. B 29 29
[8] Li F J, Liu J, Li R X 2013 Acta Phys. Sin. 62 064211 (in Chinese) [李方家, 刘军, 李儒新 2013 62 064211]
[9] Liu J, Li F J, Jiang Y L, Li C, Leng Y X, Kobayashi T, Li R X, Xu Z Z 2012 Opt. Lett. 37 4829
[10] Meshulach D, Silberberg Y 1998 Nature 396 239
[11] Zhang H, Zhang S A, Sun Z R 2011 Chin. Phys. B 20 083202
[12] Walowicz K A, Dantus M 2002 J. Phys. Chem. A 106 9369
[13] Lozovoy V V, Dantus M 2004 Opt. Lett. 29 775
[14] Comstock M, Dantus M 2004 Opt. Express 12 1061
[15] Xu B W, Dantus M 2006 J. Opt. Soc. Am. B 23 750
[16] Xu B W, Dantus M 2006 Opt. Express 14 10939
[17] Metzger B, Giessen H 2011 Opt. Express 19 24354
[18] Loriot V 2013 Opt. Express 21 24879
[19] Hacker M 2001 Appl. Phys. B 73 273
[20] Siqueira J P, Zilio S C 2012 Appl. Phys. B 108 727
Catalog
Metrics
- Abstract views: 6065
- PDF Downloads: 534
- Cited By: 0