搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象

乔晓粉 李晓莉 刘赫男 石薇 刘雪璐 吴江滨 谭平恒

引用本文:
Citation:

悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象

乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒

Periodic oscillation in the reflection and photoluminescence spectra of suspended two-dimensional crystal flakes

Qiao Xiao-Fen, Li Xiao-Li, Liu He-Nan, Shi Wei, Liu Xue-Lu, Wu Jiang-Bin, Tan Ping-Heng
PDF
导出引用
  • 研究了在二氧化硅/硅衬底上制备的悬浮石墨烯以及二硫化钼的反射光谱以及悬浮二硫化钼的光致发光光谱. 研究发现: 悬浮多层石墨烯的反射光谱表现出明显的振荡现象, 并且该振荡具有一定的周期性; 振荡周期的大小不依赖于悬浮多层石墨烯的层数, 而是随着衬底上沉孔深度(空气层厚度)的增加而减小. 利用多重光学干涉模型可以解释这种振荡现象以及振荡周期随沉孔深度改变的变化趋势. 该模型计算结果表明, 只有当沉孔深度达到微米量级时这种振荡现象才会显著出现; 并且可由振荡周期定量地确定出沉孔深度. 对于悬浮的二硫化钼样品, 其反射光谱和光致发光光谱也出现了类似的振荡现象. 这表明这种振荡现象是在各种衬底上悬浮二维材料反射光谱和光致发光光谱的一种普遍性结果, 也预示悬浮二维材料器件的电致发光光谱也会出现类似的振荡现象, 对悬浮二维晶体材料的物理性质和器件性能研究具有一定的参考价值.
    Suspended two-dimensional (2D) materials have been widely used to improve the device performances in comparison with the case of supported 2D materials. To realize such a purpose, 2D materials are mainly suspended on the holes of substrates, which are usually used to support 2D materials. The holes beneath the 2D materials are usually full of air. The air layer with the thickness identical to the hole depth will affect the spectral features of the reflection and photoluminescence spectra of suspended 2D materials because there exist multiple optical interferences in the air/2D-flakes/air/Si multilayer structures. However, it is not clear that how the spectral features depend on the hole depth. In this paper, the reflection spectra of suspended multilayer graphene and MoS2flakes as well as the photoluminescence spectra of suspended multilayer MoS2flakes are systematically studied. The reflection spectra of suspended multilayer graphene flakes exhibit obvious oscillations, showing the optical characteristic with periodic oscillations in wavenumber. The oscillation period decreases with increasing the hole depth (or the thickness of the air layer), but is independent of the thickness of suspended graphene flakes. This can be well explained by the model based on multiple optical interferences in the air/graphenes/air/Si multilayer structures, which have been successfully utilized to understand the Raman intensity of ultrathin 2D flakes and substrate beneath the ultrathin 2D flakes dependent on the thickness of 2D flakes, the thickness of SiO2 layer, the laser wavelength and the numerical aperture of objective. The theoretical simulation shows that the oscillation is obviously observable only when the hole depth reaches up to the value on the order of microns. For suspended multilayer MoS2flakes, the reflection and photoluminescence spectra show similar periodic oscillations in wavenumber and the oscillation period is also dependent on the hole depth. The hole depth is measured by the surface profiler. It is found that the calculated oscillation period based on the measured hole depth and multiple optical interference model is usually larger than the experimental one, which is attributed to the existence of the dielectric layer in the holes. The dielectric layer may be the residues after the hole etching process, which have much smaller refractive indexes than substrates and 2D flakes. This results in an increase of the effective hole depth, which becomes larger than the one measured by the surface profiler. The observation of oscillation period in the reflection and photoluminescence spectra of different flakes of 2D materials demonstrates that the periodic oscillation is a general optical characteristic for optical spectra of suspended 2D materials. In principle, the electroluminescence spectra of suspended 2D materials may also exhibit similar periodic oscillations in wavenumber. These findings may be helpful for understanding the optical spectra of various suspended 2D materials and monitoring the existence of the residues in the holes of substrate after the etching process.
      通信作者: 谭平恒, phtan@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11225421, 11434010, 11474277, 11504077)资助的课题.
      Corresponding author: Tan Ping-Heng, phtan@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11225421, 11434010, 11474277, 11504077).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1] 王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏. GaAs纳米线晶体结构及光学特性.  , 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [2] 郑卫民, 黄海北, 李素梅, 丛伟艳, 王爱芳, 李斌, 宋迎新. 掺杂在GaAs材料中Be受主能级之间的跃迁.  , 2019, 68(18): 187104. doi: 10.7498/aps.68.20190254
    [3] 侯艳洁, 胡春光, 张雷, 陈雪娇, 傅星, 胡小唐. 纳米有机薄膜有效导电层的反射光谱法研究.  , 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [4] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响.  , 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [5] 曾果, 李兴源, 刘天琪, 赵睿. 同时抑制低频振荡和次同步振荡的多通道广域自适应阻尼控制.  , 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [6] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [7] 王金平, 许建平, 徐杨军. 恒定导通时间控制buck变换器多开关周期振荡现象分析.  , 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [8] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析.  , 2011, 60(12): 120508. doi: 10.7498/aps.60.120508
    [9] 杨先清, 刘甫, 贾燕, 邓敏, 郭海萍, 唐刚. 垂直振动颗粒混合气体的振荡现象研究.  , 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [10] 牛华蕾, 李晓娜, 胡冰, 董闯, 姜辛. 纳米β-FeSi2/a-Si多层膜室温光致发光分析.  , 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [11] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究.  , 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [12] 王 茺, 刘昭麟, 李天信, 陈平平, 崔昊杨, 肖 军, 张 曙, 杨 宇, 陆 卫. 插入生长AlGaAs薄膜对InAs量子点探测器性能的影响.  , 2008, 57(2): 1155-1160. doi: 10.7498/aps.57.1155
    [13] 谢 芳, 朱亚波, 张兆慧, 张 林. 碳纳米管振荡的分子动力学模拟.  , 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] 刘 蕾, 徐升华, 孙祉伟, 段 俐, 解京昌, 林 海. 二元体系胶体晶体性质的实验研究.  , 2008, 57(11): 7367-7373. doi: 10.7498/aps.57.7367
    [15] 罗向东, 姬长建, 王玉琦, 王建农. 低温分子束外延生长的GaMnAs反射光谱的低能振荡现象.  , 2008, 57(8): 5277-5283. doi: 10.7498/aps.57.5277
    [16] 王 茺, 刘昭麟, 陈平平, 崔昊杨, 夏长生, 杨 宇, 陆 卫. 应力导致InAs/In0.15Ga0.85As量子点结构中In0.15Ga0.85As阱层的合金分解效应研究.  , 2007, 56(9): 5418-5423. doi: 10.7498/aps.56.5418
    [17] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究.  , 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [18] 宋功保, 彭同江, 万朴, 李博文. TiO_2/白云母纳米复合材料的色度学研究.  , 2002, 51(7): 1575-1580. doi: 10.7498/aps.51.1575
    [19] 董艳锋, 李清山. 多孔铝镶嵌8-羟基喹啉铝荧光光谱研究.  , 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心.  , 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  6337
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map