-
采用Hindmarsh-Rose(HR)神经元模型,研究了二维神经元阵列系统从一个具有随机相位分布的初态演化最终是否能自发产生螺旋波的问题.数值结果表明:系统是否出现螺旋波与单个HR神经元的状态、系统的初态和耦合强度有关,其中单个HR神经元的振荡状态起主要作用.当单个HR神经元处于一周期振荡态时,在一定的耦合强度范围内系统都会自发出现多个螺旋波和螺旋波对,出现螺旋波与系统初态无关,只要适当选择耦合强度,在系统中可以出现单个螺旋波.当耦合强度超过某一阈值后,继续增加耦合强度,系统会呈现三种不同的动力学行为,分别与三类初态有关.系统从第一类初态演化将偶尔出现单个螺旋波,系统从第二类和第三类初态演化将分别出现间歇性全局同步振荡和振荡死亡.当单个神经元处于二周期态时,只有当系统神经元的初相位比较均匀分布时,系统才能自发出现螺旋波,而且出现螺旋波的耦合强度范围大为减少.当神经元处于更高的周期态时,系统一般不容易自发出现螺旋波.这些结果有助于人们了解大脑皮层自发产生螺旋波的机制.
-
关键词:
- 螺旋波 /
- Hindmarsh-Rose神经元 /
- 振荡
Spiral waves have been reported to be existent in the neocortex, during pharmacologically induced oscillations and sleep-like states. In the last decades, theoretical studies have demonstrated an underlying mechanism of the generation of spiral waves in a heart system. Nevertheless, how can a neural system produce spontaneous spiral wave and whether this behavior is sensitive to the dynamics of isolated neurons have not been systematically studied yet. In this paper we propose a modified Hindmarsh-Rose (HR) neuron model to study whether spiral wave can occur spontaneously in a two-dimensional array of HR neurons, which evolves from the initial state with a random phase distribution. The simulation results show that whether spiral wave can occur spontaneously in the system depends on the state of the single HR neuron, initial state of system and coupling strength. Especially, the state of the single HR neuron plays a central role. When the single HR neuron is in the state of period 1 spike, multiple spiral waves and spiral pairs can be generated spontaneously in the system for a certain range of coupling strength. In this case, the formations of spiral waves are completely independent of the initial state of the system, and as long as choosing an appropriate coupling strength, a single spiral wave can be found in the system. Furthermore, when the coupling strength exceeds a certain threshold value, the system will exhibit three kinds of dynamical behaviors, and correspond to three kinds of the different initial states, respectively. When system evolves from the first kind of initial state, the single spiral wave can be found occasionally in the system. When the system evolves from the second or third kind of initial state, the oscillation with intermittently global synchronization and oscillation death can be observed in the system, respectively. When a single HR neuron is in the state of period 2 spike, the spiral wave can appear spontaneously in the system only when the phase distribution of the initial state approaches to a uniform distribution. Moreover, the range of coupling strength on the generation of spiral wave is smaller than that of period 1 spike. When the single HR neuron is in a higher periodic state, it is difficult to generate spontaneously spiral wave in the system. These results are useful in understanding the spontaneous generation of spiral waves in the neocortex.-
Keywords:
- spiral wave /
- Hindmarsh-Rose neuron /
- oscillation
[1] Winfree A T 1972 Science 175 634
[2] Larionova Y, Egorov O, Cabrera-Granado E, Esteban-Martin A 2005 Phys. Rev. A 72 033825
[3] Plapp B P, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334
[4] Mller S C, Plesser T, Hess B 1985 Science 230 661
[5] Vanag V K, Epstein I R 2001 Science 294 835
[6] Foerster P, Mller S C, Hess B 1990 Development 109 11
[7] Davidenko J M, Pertsov A V, Salomonsz, Baxter W, Jalife J 1992 Nature 355 349
[8] Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J 2010 Neuron 68 978
[9] Huang X, Troy W C, Yang Q, Ma H, Laing C R, Schiff S T, Wu J Y 2004 J. Neurosci. 24 9897
[10] Chen J X, Zhang H, Qiao L Y, Liang H, Sun W G 2018 Commun. Nonlinear Sci. Numer. Simulat. 54 202
[11] Chen J X, Guo M M, Ma J 2016 Europhys. Lett. 113 38004
[12] Chen J X, Liang P, Zheng Q, Zhao Y H, Ying H P 2014 Chaos 24 033103
[13] Pumir A, Nikolski V, Horning M, Isomura A, Agladze K, Yoshikawa K, Gilmour R, Bodenschatz E, Krinsky V 2007 Phys. Rev. Lett. 99 208101
[14] Gan Z N, Cheng X M 2010 Chin. Phys. B 19 050514
[15] Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S 2011 Nat Neurosci. 14 1599
[16] Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098
[17] Garca-Ojalvo J, Schimansky-Geier L 1999 Europhys. Lett. 47 298
[18] Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361
[19] Li Y Y, Zhang H M, Wei C L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 030504
[20] Wang Q Y, Perc M, Duan Z, Chen G 2008 Phys. Lett. A 372 5681
[21] Jung P, Cornell-Bell A, Moss F, Kadar S, Wang J, Showalter K 1998 Chaos 8 567
[22] Ullner E, Zaikin A, Garca-Ojalvo J, Kurths J 2003 Phys. Rev. Lett. 91 180601
[23] Ma J, Wu Y, Ying H P, Jia Y 2011 Chin. Sci. Bull. 56 151
[24] Hindmarsh J L, Rose R M 1984 Proc. Roy. Soc. Lond. B 221 87
[25] Jiruska P, De-Curtis M, Jefferys J G R, Schevon C A, Schiff S J, Schindler K 2013 J. Physiol. 591 787
-
[1] Winfree A T 1972 Science 175 634
[2] Larionova Y, Egorov O, Cabrera-Granado E, Esteban-Martin A 2005 Phys. Rev. A 72 033825
[3] Plapp B P, Egolf D A, Bodenschatz E, Pesch W 1998 Phys. Rev. Lett. 81 5334
[4] Mller S C, Plesser T, Hess B 1985 Science 230 661
[5] Vanag V K, Epstein I R 2001 Science 294 835
[6] Foerster P, Mller S C, Hess B 1990 Development 109 11
[7] Davidenko J M, Pertsov A V, Salomonsz, Baxter W, Jalife J 1992 Nature 355 349
[8] Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J 2010 Neuron 68 978
[9] Huang X, Troy W C, Yang Q, Ma H, Laing C R, Schiff S T, Wu J Y 2004 J. Neurosci. 24 9897
[10] Chen J X, Zhang H, Qiao L Y, Liang H, Sun W G 2018 Commun. Nonlinear Sci. Numer. Simulat. 54 202
[11] Chen J X, Guo M M, Ma J 2016 Europhys. Lett. 113 38004
[12] Chen J X, Liang P, Zheng Q, Zhao Y H, Ying H P 2014 Chaos 24 033103
[13] Pumir A, Nikolski V, Horning M, Isomura A, Agladze K, Yoshikawa K, Gilmour R, Bodenschatz E, Krinsky V 2007 Phys. Rev. Lett. 99 208101
[14] Gan Z N, Cheng X M 2010 Chin. Phys. B 19 050514
[15] Viventi J, Kim D H, Vigeland L, Frechette E S, Blanco J A, Kim Y S 2011 Nat Neurosci. 14 1599
[16] Jung P, Cornell-Bell A, Madden K S, Moss F 1998 J. Neurophysiol. 79 1098
[17] Garca-Ojalvo J, Schimansky-Geier L 1999 Europhys. Lett. 47 298
[18] Gu H G, Jia B, Li Y Y, Chen G R 2013 Physica A 392 1361
[19] Li Y Y, Zhang H M, Wei C L, Yang M H, Gu H G, Ren W 2009 Chin. Phys. Lett. 26 030504
[20] Wang Q Y, Perc M, Duan Z, Chen G 2008 Phys. Lett. A 372 5681
[21] Jung P, Cornell-Bell A, Moss F, Kadar S, Wang J, Showalter K 1998 Chaos 8 567
[22] Ullner E, Zaikin A, Garca-Ojalvo J, Kurths J 2003 Phys. Rev. Lett. 91 180601
[23] Ma J, Wu Y, Ying H P, Jia Y 2011 Chin. Sci. Bull. 56 151
[24] Hindmarsh J L, Rose R M 1984 Proc. Roy. Soc. Lond. B 221 87
[25] Jiruska P, De-Curtis M, Jefferys J G R, Schevon C A, Schiff S J, Schindler K 2013 J. Physiol. 591 787
计量
- 文章访问数: 7006
- PDF下载量: 167
- 被引次数: 0