Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Periodic oscillation in the reflection and photoluminescence spectra of suspended two-dimensional crystal flakes

Qiao Xiao-Fen Li Xiao-Li Liu He-Nan Shi Wei Liu Xue-Lu Wu Jiang-Bin Tan Ping-Heng

Citation:

Periodic oscillation in the reflection and photoluminescence spectra of suspended two-dimensional crystal flakes

Qiao Xiao-Fen, Li Xiao-Li, Liu He-Nan, Shi Wei, Liu Xue-Lu, Wu Jiang-Bin, Tan Ping-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Suspended two-dimensional (2D) materials have been widely used to improve the device performances in comparison with the case of supported 2D materials. To realize such a purpose, 2D materials are mainly suspended on the holes of substrates, which are usually used to support 2D materials. The holes beneath the 2D materials are usually full of air. The air layer with the thickness identical to the hole depth will affect the spectral features of the reflection and photoluminescence spectra of suspended 2D materials because there exist multiple optical interferences in the air/2D-flakes/air/Si multilayer structures. However, it is not clear that how the spectral features depend on the hole depth. In this paper, the reflection spectra of suspended multilayer graphene and MoS2flakes as well as the photoluminescence spectra of suspended multilayer MoS2flakes are systematically studied. The reflection spectra of suspended multilayer graphene flakes exhibit obvious oscillations, showing the optical characteristic with periodic oscillations in wavenumber. The oscillation period decreases with increasing the hole depth (or the thickness of the air layer), but is independent of the thickness of suspended graphene flakes. This can be well explained by the model based on multiple optical interferences in the air/graphenes/air/Si multilayer structures, which have been successfully utilized to understand the Raman intensity of ultrathin 2D flakes and substrate beneath the ultrathin 2D flakes dependent on the thickness of 2D flakes, the thickness of SiO2 layer, the laser wavelength and the numerical aperture of objective. The theoretical simulation shows that the oscillation is obviously observable only when the hole depth reaches up to the value on the order of microns. For suspended multilayer MoS2flakes, the reflection and photoluminescence spectra show similar periodic oscillations in wavenumber and the oscillation period is also dependent on the hole depth. The hole depth is measured by the surface profiler. It is found that the calculated oscillation period based on the measured hole depth and multiple optical interference model is usually larger than the experimental one, which is attributed to the existence of the dielectric layer in the holes. The dielectric layer may be the residues after the hole etching process, which have much smaller refractive indexes than substrates and 2D flakes. This results in an increase of the effective hole depth, which becomes larger than the one measured by the surface profiler. The observation of oscillation period in the reflection and photoluminescence spectra of different flakes of 2D materials demonstrates that the periodic oscillation is a general optical characteristic for optical spectra of suspended 2D materials. In principle, the electroluminescence spectra of suspended 2D materials may also exhibit similar periodic oscillations in wavenumber. These findings may be helpful for understanding the optical spectra of various suspended 2D materials and monitoring the existence of the residues in the holes of substrate after the etching process.
      Corresponding author: Tan Ping-Heng, phtan@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11225421, 11434010, 11474277, 11504077).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [3]

    Qiao J S, Kong X H, Hu, Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475

    [4]

    Zhao H, Wu J B, Zhong H X, Guo Q S, Wang X M, Xia F N, Yang L, Tan P H, Wang H 2015 Nano Res. 8 3651

    [5]

    Nomura K, MacDonald A H 2006 Phys. Rev. Lett. 96 256602

    [6]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [7]

    Pereira V H, Neto A H C, Liang H Y, Mahadevan L 2010 Phys. Rev. Lett. 105 156603

    [8]

    Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294

    [9]

    Lau C N, Bao W Z, Jr J V 2012 Mater. Today 15 238

    [10]

    Yang R, Islam A, Feng P X L 2015 Nanoscale 7 19921

    [11]

    Aguilera-Servin J, Miao T F, Bockrath M 2015 Appl. Phys. Lett. 106 083103

    [12]

    Han W P, Shi Y M, Li X L, Luo S Q, Lu Y, Tan P H 2013 Acta Phys. Sin. 62 110702 (in Chinese) [韩文鹏, 史衍猛, 李晓莉, 罗师强, 鲁妍, 谭平恒 2013 62 110702]

    [13]

    Casiraghi C, Hartschuh A, Lidorikis E, Piscanec S, Georgi C, Fasoli A, Novoselov K S, Basko D M, Ferrari A C 2007 Nano Lett. 7 2711

    [14]

    Yoon D H, Moon H, Son Y W, Choi J S, Park B H, Cha Y H, Kim Y D, Cheong H 2009 Phys. Rev. B 80 125422

    [15]

    Wang Y Y, Ni Z H, Shen Z X, Wang H M, Wu Y H 2008 Appl. Phys. Lett. 92 043121

    [16]

    Li X L, Qiao X F, Han W P, Lu Y, Tan Q H, Liu X L, Tan P H 2015 Nanoscale 7 8135

    [17]

    Li X L, Qiao X F, Han W P, Zhang X, Tan Q H, Chen T, Tan P H 2016 Nanotechnology 27 145704

    [18]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [19]

    Kravets V G, Grigorenko A N, Nair R R, Blake P, Anissimova S, Novoselov K S, Geim A K 2010 Phys. Rev. B: Condens. Matter 81 155413

    [20]

    Lu Y, Li X L, Zhang X, Wu J B, Tan P H 2015 Sci. Bull. 60 806

    [21]

    Li S L, Miyazaki H, Song H S, Kuramochi H, Nakaharai S, Tsukagoshi K 2012 ACS Nano 6 7381

    [22]

    Tan P H, Xu Z Y, Luo X D, Ge W K, Zhang Y, Mascarenhas A, Xin H P, Tu C W 2007 Appl. Phys. Lett. 90 061905

  • [1] Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng. Crystal structure and optical properties of GaAs nanowires. Acta Physica Sinica, 2019, 68(8): 087803. doi: 10.7498/aps.68.20182116
    [2] Zheng Wei-Min, Huang Hai-Bei, Li Su-Mei, Cong Wei-Yan, Wang Ai-Fang, Li Bin, Song Ying-Xin. Transitions between Be acceptor levels in GaAs bulk. Acta Physica Sinica, 2019, 68(18): 187104. doi: 10.7498/aps.68.20190254
    [3] Hou Yan-Jie, Hu Chun-Guang, Zhang Lei, Chen Xue-Jiao, Fu Xing, Hu Xiao-Tang. Characterization of effective conductive layer of nano organic thin film using reflectance spectroscopy. Acta Physica Sinica, 2016, 65(20): 200201. doi: 10.7498/aps.65.200201
    [4] Song Qi-Hui, Shi Wan-Yuan. Influence of horizontal static magnetic field on the stability of electromagnetic levitated Cu molten droplet. Acta Physica Sinica, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [5] Zeng Guo, Li Xing-Yuan, Liu Tian-Qi, Zhao Rui. Multi-channel wide area adaptive damping control for suppressing low-frequency and sub-synchronous oscillation. Acta Physica Sinica, 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [6] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [7] Wang Jin-Ping, Xu Jian-Ping, Xu Yang-Jun. Analysis of multi-switching period oscillation phenomenon in constant on-time controlled buck converter. Acta Physica Sinica, 2011, 60(5): 058401. doi: 10.7498/aps.60.058401
    [8] Lan Zhong, Xu Wei, Zhu Xia, Ma Xue-Hu. Reflection spectrum analysis of dropwise condensation with the clustering model. Acta Physica Sinica, 2011, 60(12): 120508. doi: 10.7498/aps.60.120508
    [9] Yang Xian-Qing, Liu Fu, Jia Yan, Deng Min, Guo Hai-Ping, Tang Gang. Oscillations of granular mixture gases with vertical vibration. Acta Physica Sinica, 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [10] Niu Hua-Lei, Li Xiao-Na, Hu Bing, Dong Chuang, Jiang Xin. Room-temperature photoluminescence analysis of nano-β-FeSi2/a-Si multilayer films. Acta Physica Sinica, 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [11] Yang Jun, Wu Wen-Yuan, Gong Yan-Chun. Investigation on the quantum coherent transport in magnetic tunnel junctions. Acta Physica Sinica, 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [12] Wang Chong, Liu Zhao-Lin, Li Tian-Xin, Chen Ping-Ping, Cui Hao-Yang, Xiao Jun, Zhang Shu, Yang Yu, Lu Wei. The effect of the inserted AlGaAs films on the behaviors of InAs quantum dot detector. Acta Physica Sinica, 2008, 57(2): 1155-1160. doi: 10.7498/aps.57.1155
    [13] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [14] Liu Lei, Xu Sheng-Hua, Sun Zhi-Wei, Duan Li, Xie Jing-Chang, Lin Hai. An experimental study on colloidal crystals formed in two-component dispersion of charged particles. Acta Physica Sinica, 2008, 57(11): 7367-7373. doi: 10.7498/aps.57.7367
    [15] Luo Xiang-Dong, Ji Chang-Jian, Wang Yu-Qi, Wang Jian-Nong. Low energy oscillatory phenomena in photoreflectance and photo-modulation reflectance spectra of GaMnAs films grown by low temperature molecular-beam epitaxy. Acta Physica Sinica, 2008, 57(8): 5277-5283. doi: 10.7498/aps.57.5277
    [16] Wang Chong, Liu Zhao-Lin, Chen Ping-Ping, Cui Hao-Yang, Xia Chang-Sheng, Yang Yu, Lu Wei. Strain-driven alloy decomposition of In0.15Ga0.85As well layers in InAs/In0.15Ga0.85As dots-in-a-well structure. Acta Physica Sinica, 2007, 56(9): 5418-5423. doi: 10.7498/aps.56.5418
    [17] Ding Cai-Rong, Wang Bing, Yang Guo-Wei, Wang He-Zhou. High quality SnO2 crystals grown with catalyst-assistance and study on their photoluminescent spectroscopy. Acta Physica Sinica, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [18] Song Gong-Bao, Peng Tong-Jiang, Wan Pu, Li Bo-Wen. . Acta Physica Sinica, 2002, 51(7): 1575-1580. doi: 10.7498/aps.51.1575
    [19] Dong Yan-Feng, Li Qing-Shan. . Acta Physica Sinica, 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
    [20] LIN BI-XIA, FU ZHU-XI, JIA YUN-BO, LIAO GUI-HONG. THE ULTRAVIOLET AND GREEN LUMINESCENCE CENTERS IN UNDOPED ZINC OXIDE FILMS. Acta Physica Sinica, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
Metrics
  • Abstract views:  6338
  • PDF Downloads:  380
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2016
  • Accepted Date:  03 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回
Baidu
map